转换加密法的定义是什么(转换加密法的定义是什么意思)

2023-02-17 5:26:59 摩斯密码知识 思思

加密算法总结

iOS加密相关算法框架:CommonCrypto

明文: 明文指的是未被加密过的原始数据。

密文: 明文被某种加密算法加密之后,会变成密文,从而确保原始数据的安全。密文也可以被解密,得到原始的明文。

密钥: 密钥是一种参数,它是在明文转换为密文或将密文转换为明文的算法中输入的参数。密钥分为对称密钥与非对称密钥,分别应用在对称加密和非对称加密上。

对称加密又叫做私钥加密 ,即信息的发送方和接收方使用 同一个密钥 去加密和解密数据。

对称加密的特点是 算法公开、计算量少、加密和解密速度快效率高 ,适合于对大数据量进行加密;

缺点是 双方使用相同的密钥、密钥传输的过程不安全、易被破解、因此为了保密其密钥需要经常更换

常见的对称加密算法有 AES、DES 、3DES、TDEA、Blowfish、RC5和IDEA。【不过DES被认为是不安全的】

加密过程:明文 + 加密算法 + 私钥 = 密文

解密过程: 密文 + 解密算法 + 私钥 = 明文

对称加密中用到的密钥叫做 私钥 ,私钥表示个人私有的密钥,即该密钥不能被泄露。

其 加密过程中的私钥与解密过程中用到的私钥是同一个密钥 ,这也是称加密之所以称之为“对称”的原因。由于对称加密的 算法是公开 的,所以一旦私钥被泄露,那么密文就很容易被破解,所以对称加密的 缺点是密钥安全管理困难 。

3DES是DES加密算法的一种模式,它使用3条64位的密钥对数据进行三次加密。是DES像AES过渡的加密算法,是DES的一个更安全的变形,它以DES为基本模块,通过组合分组方法设计出分组加密算法。

非对称加密也叫做公钥加密 。非对称加密与对称加密相比,其安全性更好。对称加密的通信双方使用相同的密钥,如果一方的密钥遭泄露,那么整个通信就会被破解。而 非对称加密使用一对密钥,即公钥和私钥 , 且二者成对出现 。私钥被自己保存,不能对外泄露。公钥指的是公共的密钥,任何人都可以获得该密钥。用公钥或私钥中的任何一个进行加密,用另一个进行解密。两种使用方法:

哈希算法加密是通过哈希算法对数据加密、加密后的结果不可逆,即加密后不能在解密。

SHA加密,安全哈希算法,主要适用于数字签名签名标准( DSS )里面定义的数字签名算法( DSA )。对于长度小于 2^64 位的消息, SHA1 会产生一个160位的消息摘要。当接收消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。当然除了 SHA1 还有 SHA256 以及 SHA512 等。

HMAC加密,给定一个密钥,对明文加密,做两次“散列”,得到的结果还是32位字符串。

就是或、与、异或、或者加上某个数据

特点:可逆、原始数据和加密数据长度保持一致

转换加密法的定义是什么(转换加密法的定义是什么意思) 第1张

揭开密码的秘密?

你有秘密吗?如果你有那么我希望你知道怎样保护它们,因为秘密总是很吸引人。为了保护那脆弱的秘密,人们会使用密码,密码让机密的内容不会被人偷看,防止秘密落入他人之手,而且也帮助过一代又一代的孩子在课堂上传递纸条。

密码的世界笼罩着神秘,也充满诡计、虚假情报和欺骗,那么,密码是何时产生的呢?早在公元前1500年,一个古代的陶工用密码隐藏他的上釉秘方,成为了人们知道的最早的编码人;1917年一封破译的电报导致美国加入了一战;1939-1945年,破译恩尼格码的仪器帮助盟军赢得了二战的胜利……如今,密码的使用更是频繁,电脑和各种账号密码保证你的信息安全,政府和间谍继续使用它们传递秘密情报。

代码和密码有何区别?

开始介绍密码之前,我希望你最好能知道两种码:代码和密码。代码是用别的词或一组字母代替整个词;密码则是用符号代替单个字母或声音,或者改变字母顺序。

尽管代码和密码不同,却经常广义地用“密码”这个词来指定。代码的工作原理非常简单,它不过是使用了另外一种码来隐藏最重要的词,只要双方约定了密码的意义就可以解码了。代码的使用十分广泛,比如你现在正在阅读的文字,如果有一天每个人都不知道这些文字的意义,那么它就成了不可破解的秘密了。不要觉得这很扯,遥远的过去那些象形文字就是最好的例子。

凯撒移位法

简单的密码有两种:用别的符号、字母和数字代替其他字母的替代密码;把字母用别的顺序编写的转换密码。替代密码很简单,比如我可以把这篇文章翻译成英语,用英语为这篇文章加密,不过因为英语被大家普遍掌握,使得这种加密方法显得过于简单。我们常用的密码主要是转换密码,比较早的转换密码有凯撒移位法,它的加密方式是将普通字母表向后移动几位,如下:

这种方法可以提供25种可能,想要破解也只要尝试25次即可。为了增加译码的难度,我们可以在凯撒移位密码里加入关键词。首先,将关键词放在字母表的开头,然后按照顺序完成字母表中剩余部分,从关键词的最后一个字母开始,省略用过的字母。

比如以“look”为关键词,把它放在密码的字母表开头,因为要省略用过的字母,“look”只能写为“lok”,并且后面的字母表中的“O”也要一并省去,即:

明码表:ABCDEFGHIJKLMN

密码表:LOKLMNPQRSTUVW

这种密码提供了超过多种的可能性,这样就不会被轻易试出密码啦。如果你认为这样一种密码就可以很好地保护你的信息安全,那就图样图森破啦。实际上,通过大量的统计人们发现,英语中有几种字母出现的频率比其他字母要高很多,这就给译码人提供了一种强有力的武器——频率分析法。凯撒移位法只是掩盖了字母本身,并不能改变字母出现的频率,这样的密码正好让频率分析法大显身手。

解密恩尼格玛机

频率分析一出现,编码人就开始寻找破坏频率分析的方法。15世纪一个叫利昂?巴提斯塔?艾伯提的人想出了使用两个或者更多的字母表加密的方法,这就是“多字母表替代体系”。这种替代体系虽然可以阻止译码人使用频率分析法译出密码,但是在紧急情况下出错的几率也是非常高的。为了更好地使用这种编码方法,人们需要一种方便的编码机器。二战时期,让盟军译码人倍感头疼的恩尼格码机就是其中著名的代表。

恩尼格码加密法是利用电机系统来实现多码变换的,这种系统叫作回转轮系统。回转轮是一个圆盘,它的两面都有电子接点,每个接点代表字母表中的一个字母。回转轮内部有连接各接点的电线,这种连接方式定义了简单单码替换方式。数个这样的回转轮和一个反射器组合起来就构成了强大的恩尼格码加密机。然而要想看到它的工作方法,你需要把一种名叫转子的电动密码转盘连接在键盘、显示屏和电池上。你在键盘上打出普通的字母,电流就沿着接触点流动,流到转子的另一个触点,显示屏上相应的字母就亮灯。如果你把转子转到不同的位置,就改变了接触点连接键盘的方式。这样打入同一个字母,就可能产生不同的密码字母。

这就是恩尼格码机的工作原理,只不过现实中的恩尼格码机远没有那么简单。为了让恩尼格码变得无法破解,他们在恩尼格码机上加入了一些其它元素:让转子旋转起来,可以互换的转子,在机器前加入插接板,或者加入反射体等。旋转的转子、可以互换的转子、机器前的插接板都是为了增加可供加密的字母表个数,那么反射体是什么?与普通的恩尼格码机不同的是,反射体的加入使穿过三个转子之后的电流并不直接流向显示屏,而是沿着另一条叫作反射体的线路流动,从转子反方向流回来。

这个体系设计得很精细,让电流总是能沿着不同的线路流回来。这意味着恩尼格码机给“a”加码“U”后,又在完全相同的转子位置给“u”加码为“A”。看起来非常聪明,但是这也是恩尼格码机的致命弱点所在,加入反射体后的恩尼格码机无法让被加密的字母变成它本身。正是这个看似不起眼的弱点却成了破解它的关键。

如何破解恩尼格玛密码?

想要解开恩尼格码,就必须要知道加密方的加密字母表,也就是转子的设置。为了检测那些可能出现的转子位置,二战时期盟军设计了一种名叫“炸弹”的机器。为了解密,他们首先需要找到一个突破口——一个他们确信在普通文本的信里出现的一个词或者短语,然后找到它在密电中的对应词或者短语。这并不容易,但是恩尼格码不能加密为本身的特性帮助了他们。译码人把作为突破口的普通词放在密电上方,来看是否有任何字母相同。如果有,译码人就知道这里不是正确的位置,于是试别的地方,如此反复直到试出正确位置。

关于对恩尼格码机解码的秘密,直到20世纪70年代才公之于众。而那时,世界上到处都在使用计算机,计算机改变了密码产生和使用的方式。

密码学从最初的凯撒密码至今,走过了一个漫长的历程。计算机的超强计算能力,让那些经典的加密方法都已失效。但是先哲的思想并未失效,密码学也仍然在飞速发展,眼下它正朝着量子系统前进。一旦进入这种新的世界,密码学会发生什么变化,我们只能靠猜测了。但可以预见的是,这一定不是密码学故事的结束,而只是刚刚开始。

(作者:李星明)

数据加密的方法有哪些?如题

1. 数据加密标准 传统加密方法有两种,替换和置换.上面的例子采用的就是替换的方法:使用密钥将明文中的每一个字符转换为密 文中的一个字符.而置换仅将明文的字符按不同的顺序重新排列.单独使用这两种方法的任意一种都是不够安全的,但 是将这两种方法结合起来就能提供相当高的安全程度.数据加密标准(Data Encryption Standard,简称DES)就采用了 这种结合算法,它由IBM制定,并在1977年成为美国官方加密标准. DES的工作原理为:将明文分割成许多64位大小的块,每个块用64位密钥进行加密,实际上,密钥由56位数据位和8 位奇偶校验位组成,因此只有256个可能的密码而不是264个.每块先用初始置换方法进行加密,再连续进行16次复杂的 替换,最后再对其施用初始置换的逆.第i步的替换并不是直接利用原始的密钥K,而是由K与i计算出的密钥Ki. DES具有这样的特性,其解密算法与加密算法相同,除了密钥Ki的施加顺序相反以外. 2. 公开密钥加密 多年来,许多人都认为DES并不是真的很安全.事实上,即使不采用智能的方法,随着快速、高度并行的处理器的出 现,强制破解DES也是可能的.公开密钥加密方法使得DES以及类似的传统加密技术过时了.公开密钥加密方法中,加密 算法和加密密钥都是公开的,任何人都可将明文转换成密文.但是相应的解密密钥是保密的(公开密钥方法包括两个密钥, 分别用于加密和解密),而且无法从加密密钥推导出,因此,即使是加密者若未被授权也无法执行相应的解密. 公开密钥加密思想最初是由Diffie和Hellman提出的,最著名的是Rivest、Shamir以及Adleman提出的,现在通常称为 RSA(以三个发明者的首位字母命名)的方法,该方法基于下面的两个事实: 1) 已有确定一个数是不是质数的快速算法; 2) 尚未找到确定一个合数的质因子的快速算法. RSA方法的工作原理如下: 1) 任意选取两个不同的大质数p和q,计算乘积r=p*q; 2) 任意选取一个大整数e,e与(p-1)*(q-1)互质,整数e用做加密密钥.注意:e的选取是很容易的,例如,所有大 于p和q的质数都可用. 3) 确定解密密钥d: d * e = 1 modulo(p - 1)*(q - 1) 根据e、p和q可以容易地计算出d. 4) 公开整数r和e,但是不公开d; 5) 将明文P (假设P是一个小于r的整数)加密为密文C,计算方法为: C = Pe modulo r 6) 将密文C解密为明文P,计算方法为: P = Cd modulo r 然而只根据r和e(不是p和q)要计算出d是不可能的.因此,任何人都可对明文进行加密,但只有授权用户(知道d) 才可对密文解密.

“密码学”是怎么的一回事?

现在密码学不算冷门。只是这个学科比较复杂。密码学是研究编制密码和破译密码的技术科学。研究密码变化的客观规律,应用于编制密码以保守通信秘密的,称为编码学;应用于破译密码以获取通信情报的,称为破译学,总称密码学。现在密码已经成为单独的学科,从传统意义上来说,密码学是研究如何把信息转换成一种隐蔽的方式并阻止其他人得到它。密码学是一门跨学科科目,从很多领域衍生而来:它可以被看做是信息理论,却使用了大量的数学领域的工具,众所周知的如数论和有限数学。原始的信息,也就是需要被密码保护的信息,被称为明文。加密是把原始信息转换成不可读形式,也就是密码的过程。解密是加密的逆过程,从加密过的信息中得到原始信息。cipher是加密和解密时使用的算法。最早的隐写术只需纸笔,现在称为经典密码学。其两大类别为置换加密法,将字母的顺序重新排列;替换加密法,将一组字母换成其他字母或符号。经典加密法的资讯易受统计的攻破,资料越多,破解就更容易,使用分析频率就是好法。经典密码学现在仍未消失,经常出现在智力游戏之中。在二十世纪早期,包括转轮机在内的一些机械设备被发明出来用于加密,其中最著名的是用于第二次世界大战的密码机Enigma。这些机器产生的密码相当大地增加了密码分析的难度。比如针对Enigma各种各样的攻击,在付出了相当大的努力后才得以成功。