密码学(在西欧语文中之源於希腊语kryptós,「隐藏的」,和gráphein,「书写」)是研究如何隐密地传递资讯的学门。在现代特别指对资讯以及其传输的数学性研究,常被认为是数学和计算机科学的分支,和资讯理论也密切相关。著名的密码学者Ron Rivest解释道:「密码学是关於如何在敌人存在的环境中通讯」,自工程学的角度,这相当於密码学与纯数学的异同。密码学是资讯安全等相关议题,如认证、存取控制的核心。密码学的首要目的是隐藏讯息的涵义,并不是隐藏讯息的存在。密码学也促进了电脑科学,特别是在於电脑与网路安全所使用的技术,如存取控制与资讯的机密性。密码学已被应用在日常生活:包括自动柜员机的晶片卡、电脑使用者存取密码、电子商务等等。
最简单的就是希尔密码
希尔密码是基于矩阵的线性变换, 希尔密码相对于前面介绍的移位密码以及放射密码而言, 其最大的好处就是隐藏了字符的频率信息, 使得传统的通过字频来破译密文的方法失效
矩阵(数学术语)
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合、 ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
定义
由 m × n 个数aij排成的m行n列的数表称为m行n列的矩阵,简称m × n矩阵。记作:
这m×n 个数称为矩阵A的元素,简称为元,数aij位于矩阵A的第i行第j列,称为矩阵A的(i,j)元,以数 aij为(i,j)元的矩阵可记为(aij)或(aij)m × n,m×n矩阵A也记作Amn。
元素是实数的矩阵称为实矩阵,元素是复数的矩阵称为复矩阵。而行数与列数都等于n的矩阵称为n阶矩阵或n阶方阵 。
矩阵的历史
矩阵的研究历史悠久,拉丁方阵和幻方在史前年代已有人研究。
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合[1] ,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。在消元过程中,使用的把某行乘以某一非零实数、从某行中减去另一行等运算技巧,相当于矩阵的初等变换。但那时并没有现今理解的矩阵概念,虽然它与现有的矩阵形式上相同,但在当时只是作为线性方程组的标准表示与处理方式。
矩阵正式作为数学中的研究对象出现,则是在行列式的研究发展起来后。逻辑上,矩阵的概念先于行列式,但在实际的历史上则恰好相反。日本数学家关孝和(1683年)与微积分的发现者之一戈特弗里德·威廉·莱布尼茨(1693年)近乎同时地独立建立了行列式论。其后行列式作为解线性方程组的工具逐步发展。1750年,加布里尔·克拉默发现了克莱姆法则。
矩阵的现代概念在19世纪逐渐形成。1800年代,高斯和威廉·若尔当建立了高斯—若尔当消去法。1844年,德国数学家费迪南·艾森斯坦(F.Eisenstein)讨论了“变换”(矩阵)及其乘积。1850年,英国数学家詹姆斯·约瑟夫·西尔维斯特(James Joseph Sylvester)首先使用矩阵一词。
英国数学家阿瑟·凯利被公认为矩阵论的奠基人。他开始将矩阵作为独立的数学对象研究时,许多与矩阵有关的性质已经在行列式的研究中被发现了,这也使得凯利认为矩阵的引进是十分自然的。他说:“我决然不是通过四元数而获得矩阵概念的;它或是直接从行列式的概念而来,或是作为一个表达线性方程组的方便方法而来的。”他从1858年开始,发表了《矩阵论的研究报告》等一系列关于矩阵的专门论文,研究了矩阵的运算律、矩阵的逆以及转置和特征多项式方程。凯利还提出了凯莱-哈密尔顿定理,并验证了3×3矩阵的情况,又说进一步的证明是不必要的。哈密尔顿证明了4×4矩阵的情况,而一般情况下的证明是德国数学家弗罗贝尼乌斯(F.G.Frohenius)于1898年给出的[4] 。
1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。
1854年时法国数学家埃尔米特(C.Hermite)使用了“正交矩阵”这一术语,但他的正式定义直到1878年才由费罗贝尼乌斯发表。1879年,费罗贝尼乌斯引入矩阵秩的概念。至此,矩阵的体系基本上建立起来了。
无限维矩阵的研究始于1884年。庞加莱在两篇不严谨地使用了无限维矩阵和行列式理论的文章后开始了对这一方面的专门研究。1906年,希尔伯特引入无限二次型(相当于无限维矩阵)对积分方程进行研究,极大地促进了无限维矩阵的研究。在此基础上,施密茨、赫林格和特普利茨发展出算子理论,而无限维矩阵成为了研究函数空间算子的有力工具。
矩阵的概念最早在1922年见于中文。1922年,程廷熙在一篇介绍文章中将矩阵译为“纵横阵”。1925年,科学名词审查会算学名词审查组在《科学》第十卷第四期刊登的审定名词表中,矩阵被翻译为“矩阵式”,方块矩阵翻译为“方阵式”,而各类矩阵如“正交矩阵”、“伴随矩阵”中的“矩阵”则被翻译为“方阵”。1935年,中国数学会审查后,中华民国教育部审定的《数学名词》(并“通令全国各院校一律遵用,以昭划一”)中,“矩阵”作为译名首次出现。1938年,曹惠群在接受科学名词审查会委托就数学名词加以校订的《算学名词汇编》中,认为应当的译名是“长方阵”。中华人民共和国成立后编订的《数学名词》中,则将译名定为“(矩)阵”。1993年,中国自然科学名词审定委员会公布的《数学名词》中,“矩阵”被定为正式译名,并沿用至今。
应用
矩阵是高等代数学中的常见工具,也常见于统计分析等应用数学学科中。 在物理学中,矩阵于电路学、力学、光学和量子物理中都有应用;计算机科学中,三维动画制作也需要用到矩阵。 矩阵的运算是数值分析领域的重要问题。将矩阵分解为简单矩阵的组合可以在理论和实际应用上简化矩阵的运算。对一些应用广泛而形式特殊的矩阵,例如稀疏矩阵和准对角矩阵,有特定的快速运算算法。关于矩阵相关理论的发展和应用,请参考矩阵理论。在天体物理、量子力学等领域,也会出现无穷维的矩阵,是矩阵的一种推广。
图像处理
在图像处理中图像的仿射变换一般可以表示为一个仿射矩阵和一张原始图像相乘的形式,例如:
这里表示的是一次线性变换再街上一个平移。
线性变换及对称
线性变换及其所对应的对称,在现代物理学中有着重要的角色。例如,在量子场论中,基本粒子是由狭义相对论的洛伦兹群所表示,具体来说,即它们在旋量群下的表现。内含泡利矩阵及更通用的狄拉克矩阵的具体表示,在费米子的物理描述中,是一项不可或缺的构成部分,而费米子的表现可以用旋量来表述。描述最轻的三种夸克时,需要用到一种内含特殊酉群SU(3)的群论表示;物理学家在计算时会用一种更简便的矩阵表示,叫盖尔曼矩阵,这种矩阵也被用作SU(3)规范群,而强核力的现代描述──量子色动力学的基础正是SU(3)。还有卡比博-小林-益川矩阵(CKM矩阵):在弱相互作用中重要的基本夸克态,与指定粒子间不同质量的夸克态不一样,但两者却是成线性关系,而CKM矩阵所表达的就是这一点。
量子态的线性组合
1925年海森堡提出第一个量子力学模型时,使用了无限维矩阵来表示理论中作用在量子态上的算子。这种做法在矩阵力学中也能见到。例如密度矩阵就是用来刻画量子系统中“纯”量子态的线性组合表示的“混合”量子态。
另一种矩阵是用来描述构成实验粒子物理基石的散射实验的重要工具。当粒子在加速器中发生碰撞,原本没有相互作用的粒子在高速运动中进入其它粒子的作用区,动量改变,形成一系列新的粒子。这种碰撞可以解释为结果粒子状态和入射粒子状态线性组合的标量积。其中的线性组合可以表达为一个矩阵,称为S矩阵,其中记录了所有可能的粒子间相互作用。
简正模式
矩阵在物理学中的另一类泛应用是描述线性耦合调和系统。这类系统的运动方程可以用矩阵的形式来表示,即用一个质量矩阵乘以一个广义速度来给出运动项,用力矩阵乘以位移向量来刻画相互作用。求系统的解的最优方法是将矩阵的特征向量求出(通过对角化等方式),称为系统的简正模式。这种求解方式在研究分子内部动力学模式时十分重要:系统内部由化学键结合的原子的振动可以表示成简正振动模式的叠加[31] 。描述力学振动或电路振荡时,也需要使用简正模式求解。
几何光学
在几何光学里,可以找到很多需要用到矩阵的地方。几何光学是一种忽略了光波波动性的近似理论,这理论的模型将光线视为几何射线。采用近轴近似(英语:paraxial approximation),假若光线与光轴之间的夹角很小,则透镜或反射元件对于光线的作用,可以表达为2×2矩阵与向量的乘积。这向量的两个分量是光线的几何性质(光线的斜率、光线跟光轴之间在主平面(英语:principal plane)的垂直距离)。这矩阵称为光线传输矩阵(英语:ray transfer matrix),内中元素编码了光学元件的性质。对于折射,这矩阵又细分为两种:“折射矩阵”与“平移矩阵”。折射矩阵描述光线遇到透镜的折射行为。平移矩阵描述光线从一个主平面传播到另一个主平面的平移行为。
由一系列透镜或反射元件组成的光学系统,可以很简单地以对应的矩阵组合来描述其光线传播路径。
电子学
在电子学里,传统的网目分析(英语:mesh analysis)或节点分析会获得一个线性方程组,这可以以矩阵来表示与计算。
密码的种类有很多,这里列举几个知名的密码种类
1、摩斯电码
摩尔斯电码由点(.)嘀、划(-)嗒两种符号按以下原则组成:
一点为一基本信号单位,每一划的时间长度相当于 3 点的时间长度。在一个字母或数字内,各点、各划之间的间隔应为两点的长度。字母(数字)与字母(数字)之间的间隔为 7 点的长度。
2、恺撒移位密码。
也就是一种最简单的错位法,将字母表前移或者后错几位。
例如: 明码表:ABCDEFGHIJKLMNOPQRSTUVWXYZ
密码表:DEFGHIJKLMNOPQRSTUVWXYZABC,这就形成了一个简单的密码表,如果想写 frzy(即明文),那么对照上面密码表编成密码也就
是 iucb(即密文)了。
密码表可以自己选择移几位,移动的位数也就是密钥。
3、栅栏易位法。
即把将要传递的信息中的字母交替排成上下两行,再将下面一行字母排在上面一行的后边,从而形成一段密码。
举例:
TEOGSDYUTAENNHLNETAMSHVAED
解:
将字母分截开排成两行,如下
T E O G S D Y U T A E N N
H L N E T A M S H V A E D
再将第二行字母分别放入第一行中,得到以下结果 THE LONGEST DAY MUST HAVE AN END。
扩展资料:
密码是一门科学,有着悠久的历史。密码在古希腊与波斯帝国的战争中就被用于传递秘密消息。在近代和现代战争中,传递情报和指挥战争均离不开密码,外交斗争中也离不开密码。
密码一般用于信息通信传输过程中的保密和存储中的保密。随着计算机和信息技术的发展,密码技术的发展也非常迅速,应用领域不断扩展。密码除了用于信息加密外,也用于数据信息签名和安全认证。
这样,密码的应用也不再只局限于为军事、外交斗争服务,它也广泛应用在社会和经济活动中。当今世界已经出现了密码应用的社会化和个人化趋势。
例如:可以将密码技术应用在电子商务中,对网上交易双方的身份和商业信用进行识别,防止网上电子商务中的“黑客”和欺诈行为。
应用于增值税发票中,可以防伪、防篡改,杜绝了各种利用增值税发票偷、漏、逃、骗国家税收的行为,并大大方便了税务稽查。
应用于银行支票鉴别中,可以大大降低利用假支票进行金融诈骗的金融犯罪行为;应用于个人移动通信中,大大增强了通信信息的保密性等等。
参考资料来源:百度百科--密码
从数学角度的应用不太多,线代是工程数学的基础,要说生活中的应用还真不多见。希尔密码是用矩阵的原理设计的,这算是一个应用吧....
虽然数学应用不多,但线代的思想还是可以应用到生活中来的:分类,标准型和不变量的观点是线性代数思想方法的核心。1、分类是讲究从整体着眼,抽象地看问题,在生活中的提示就是善于总结和归纳,跳出事物本身,不要一叶障目从而抓偏了事物的本质。2标准型的观点是着眼于局部,具体地研究问题。3、不变量的观点是揭露事物的本质,在绝对的变换中寻找相对的不变。
你比如说矩阵和线性方程组的初等变换在理论研究中非常重要,他们能够化繁为简,但是你在变换的过程中要遵循其重要性质不变,抓住它的本质,如矩阵的初等变换中要保持矩阵的秩不变,线性方程组的初等变换中要使线性方程组的解集合不变。线性代数的核心就是用变换的思想去解决问题,解线性方程组,矩阵方程,行列式,特征多项式,特征值这些都需要变换。在生活中的应用就是你自己要体会了,学会变通,这么做不行就换一个方法,只要把握住中心和本质不变,其它都可以变通。
在公元前,秘密书信已用于战争之中。西洋“史学之父”希罗多德(Herodotus)的《历史》(The Histories)当中记载了一些最早的秘密书信故事。公元前5世纪,希腊城邦为对抗奴役和侵略,与波斯发生多次冲突和战争。
于公元前480年,波斯秘密集结了强大的军队,准备对雅典(Athens)和斯巴达(Sparta)发动一次突袭。希腊人狄马拉图斯在波斯的苏萨城里看到了这次集结,便利用了一层蜡把木板上的字遮盖住,送往并告知了希腊人波斯的图谋。最后,波斯海军覆没于雅典附近的沙拉米斯湾(Salamis Bay)。
由于古时多数人并不识字,最早的秘密书写的形式只用到纸笔或等同物品,随着识字率提高,就开始需要真正的密码学了。最古典的两个加密技巧是:
1、置换(Transposition cipher):将字母顺序重新排列,例如‘help me’变成‘ehpl em’。
2、替代(substitution cipher):有系统地将一组字母换成其他字母或符号,例如‘fly at once’变成‘gmz bu podf’(每个字母用下一个字母取代)。
扩展资料:
进行明密变换的法则,称为密码的体制。指示这种变换的参数,称为密钥。它们是密码编制的重要组成部分。密码体制的基本类型可以分为四种:
1、错乱——按照规定的图形和线路,改变明文字母或数码等的位置成为密文;
2、代替——用一个或多个代替表将明文字母或数码等代替为密文;
3、密本——用预先编定的字母或数字密码组,代替一定的词组单词等变明文为密文;
4、加乱——用有限元素组成的一串序列作为乱数,按规定的算法,同明文序列相结合变成密文。
以上四种密码体制,既可单独使用,也可混合使用 ,以编制出各种复杂度很高的实用密码。
参考资料来源:百度百科—密码学