Hash,一般翻译做“散列”,也有直接音译为“哈希”的,就是把任意长度的输入通过散列算法变换成固定长度的输出,该输出就是散列值。这种转换是一种压缩映射,也就是,散列值的空间通常远小于输入的空间,不同的输入可能会散列成相同的输出,所以不可能从散列值来确定唯一的输入值。简单的说就是一种将任意长度的消息压缩到某一固定长度的消息摘要的函数
通过运用HASH算法,给用户的密码进行加密
为什么用签名这个词.因为老外喜欢用支票,支票上面的签名能够证明这玩意是你的.那么数字签名顾名思义,就是用于鉴别数字信息的方法
数字签名
对称加密方式:明文通过密钥加密得到密文。密文通过密钥解密得到明文。
下一个符号断点
只能用真机才可以 register read 出来
哈希是一种加密算法,也称为散列函数或杂凑函数。哈希函数是一个公开函数,可以将任意长度的消息M映射成为一个长度较短且长度固定的值H(M),称H(M)为哈希值、散列值(Hash Value)、杂凑值或者消息摘要。它是一种单向密码体制,即一个从明文到密文的不可逆映射,只有加密过程,没有解密过程。 扩展资料
Hash算法的特点:
易压缩:对于任意大小的输入x,Hash值的长度很小,在实际应用中,函数H产生的Hash值其长度是固定的。
易计算:对于任意给定的消息,计算其Hash值比较容易。
单向性:对于给定的Hash值,要找到使得在计算上是不可行的,即求Hash的逆很困难。在给定某个哈希函数H和哈希值H(M)的情况下,得出M在计算上是不可行的。即从哈希输出无法倒推输入的原始数值。这是哈希函数安全性的基础。
抗碰撞性:理想的Hash函数是无碰撞的,但在实际算法的.设计中很难做到这一点。
有两种抗碰撞性:一种是弱抗碰撞性,即对于给定的消息,要发现另一个消息,满足在计算上是不可行的;另一种是强抗碰撞性,即对于任意一对不同的消息,使得在计算上也是不可行的。
高灵敏性:这是从比特位角度出发的,指的是1比特位的输入变化会造成1/2的比特位发生变化。消息M的任何改变都会导致哈希值H(M)发生改变。即如果输入有微小不同,哈希运算后的输出一定不同。
MD5即Message-Digest Algorithm 5(信息摘要算法5),是计算机广泛使用的散列算法之一。经MD2、MD3和MD4发展而来,诞生于20世纪90年代初。用于确保信息传输完整一致。虽然已被破解,但仍然具有较好的安全性,加之可以免费使用,所以仍广泛运用于数字签名、文件完整性验证以及口令加密等领域。
算法原理:
散列算法得到的结果位数是有限的,比如MD5算法计算出的结果字长为128位,意味着只要我们穷举2^128次,就肯定能得到一组碰撞,下面让我们来看看一个真实的碰撞案例。我们之所以说MD5过时,是因为它在某些时候已经很难表现出散列算法的某些优势——比如在应对文件的微小修改时,散列算法得到的指纹结果应当有显著的不同,而下面的程序说明了MD5并不能实现这一点。
而诸如此类的碰撞案例还有很多,上面只是原始文件相对较小的一个例子。事实上现在我们用智能手机只要数秒就能找到MD5的一个碰撞案例,因此,MD5在数年前就已经不被推荐作为应用中的散列算法方案,取代它的是SHA家族算法,也就是安全散列算法(Secure Hash Algorithm,缩写为SHA)。
SHA实际包括有一系列算法,分别是SHA-1、SHA-224、SHA-256、SHA-384以及SHA-512。而我们所说的SHA2实际是对后面4中的统称。各种SHA算法的数据比较如下表,其中的长度单位均为位:
MD5和SHA1,它们都有4个逻辑函数,而在SHA2的一系列算法中都采用了6个逻辑函数。
以SHA-1为例,算法包括有如下的处理过程:
和MD5处理输入方式相同
经过添加位数处理的明文,其长度正好为512位的整数倍,然后按512位的长度进行分组,可以得到一定数量的明文分组,我们用Y 0 ,Y 1 ,……Y N-1 表示这些明文分组。对于每一个明文分组,都要重复反复的处理,这些与MD5都是相同的。
而对于每个512位的明文分组,SHA1将其再分成16份更小的明文分组,称为子明文分组,每个子明文分组为32位,我们且使用M[t](t= 0, 1,……15)来表示这16个子明文分组。然后需要将这16个子明文分组扩充到80个子明文分组,我们将其记为W[t](t= 0, 1,……79),扩充的具体方法是:当0≤t≤15时,Wt = Mt;当16≤t≤79时,Wt = ( W t-3 ⊕ W t-8 ⊕ W t-14 ⊕ W t-16 ) 1,从而得到80个子明文分组。
所谓初始化缓存就是为链接变量赋初值。前面我们实现MD5算法时,说过由于摘要是128位,以32位为计算单位,所以需要4个链接变量。同样SHA-1采用160位的信息摘要,也以32位为计算长度,就需要5个链接变量。我们记为A、B、C、D、E。其初始赋值分别为:A = 0x67452301、B = 0xEFCDAB89、C = 0x98BADCFE、D = 0x10325476、E = 0xC3D2E1F0。
如果我们对比前面说过的MD5算法就会发现,前4个链接变量的初始值是一样的,因为它们本来就是同源的。
经过前面的准备,接下来就是计算信息摘要了。SHA1有4轮运算,每一轮包括20个步骤,一共80步,最终产生160位的信息摘要,这160位的摘要存放在5个32位的链接变量中。
在SHA1的4论运算中,虽然进行的就具体操作函数不同,但逻辑过程却是一致的。首先,定义5个变量,假设为H0、H1、H2、H3、H4,对其分别进行如下操作:
(A)、将A左移5为与 函数的结果求和,再与对应的子明文分组、E以及计算常数求和后的结果赋予H0。
(B)、将A的值赋予H1。
(C)、将B左移30位,并赋予H2。
(D)、将C的值赋予H3。
(E)、将D的值赋予H4。
(F)、最后将H0、H1、H2、H3、H4的值分别赋予A、B、C、D
这一过程表示如下:
而在4轮80步的计算中使用到的函数和固定常数如下表所示:
经过4轮80步计算后得到的结果,再与各链接变量的初始值求和,就得到了我们最终的信息摘要。而对于有多个明文分组的,则将前面所得到的结果作为初始值进行下一明文分组的计算,最终计算全部的明文分组就得到了最终的结果。
一、哈希HASH
哈希(散列)函数 MD5 SHA1/256/512 HMAC
Hash的特点:
1.算法是公开的
2.对相同数据运算,得到的结果是一样的
3.对不同数据运算,如MD5得到的结果是128位,32个字符的十六进制表示,没法逆运算
1.MD5加密
MD5加密的特点:
不可逆运算
对不同的数据加密的结果是定长的32位字符(不管文件多大都一样)
对相同的数据加密,得到的结果是一样的(也就是复制)。
抗修改性 : 信息“指纹”,对原数据进行任何改动,哪怕只修改一个字节,所得到的 MD5 值都有很大区别.
弱抗碰撞 : 已知原数据和其 MD5 值,想找到一个具有相同 MD5 值的数据(即伪造数据)是非常困难的.
强抗碰撞: 想找到两个不同数据,使他们具有相同的 MD5 值,是非常困难的
MD5 应用:
一致性验证:MD5将整个文件当做一个大文本信息,通过不可逆的字符串变换算法,产生一个唯一的MD5信息摘要,就像每个人都有自己独一无二的指纹,MD5对任何文件产生一个独一无二的数字指纹。
那么问题来了,你觉得这个MD5加密安全吗?其实是不安全的,不信的话可以到这个网站试试:md5破解网站。可以说嗖地一下就破解了你的MD5加密!
2.SHA加密
安全哈希算法(Secure Hash Algorithm)主要适用于数字签名标准(Digital Signature Standard DSS)里面定义的数字签名算法(Digital Signature Algorithm DSA)。对于长度小于2^64位的消息,SHA1会产生一个160位的消息摘要。当接收到消息的时候,这个消息摘要可以用来验证数据的完整性。在传输的过程中,数据很可能会发生变化,那么这时候就会产生不同的消息摘要。当让除了SHA1还有SHA256以及SHA512等。
二、base64加密
1.Base64说明
描述:Base64可以成为密码学的基石,非常重要。
特点:可以将任意的二进制数据进行Base64编码
结果:所有的数据都能被编码为并只用65个字符就能表示的文本文件。
65字符:A~Z a~z 0~9 + / =
对文件进行base64编码后文件数据的变化:编码后的数据~=编码前数据的4/3,会大1/3左右。
2.命令行进行Base64编码和解码
编码:base64 123.png -o 123.txt
解码:base64 123.txt -o test.png -D
2.Base64编码原理
1)将所有字符转化为ASCII码;
2)将ASCII码转化为8位二进制;
3)将二进制3个归成一组(不足3个在后边补0)共24位,再拆分成4组,每组6位;
4)统一在6位二进制前补两个0凑足8位;
5)将补0后的二进制转为十进制;
6)从Base64编码表获取十进制对应的Base64编码;
处理过程说明:
a.转换的时候,将三个byte的数据,先后放入一个24bit的缓冲区中,先来的byte占高位。
b.数据不足3byte的话,于缓冲区中剩下的bit用0补足。然后,每次取出6个bit,按照其值选择查表选择对应的字符作为编码后的输出。
c.不断进行,直到全部输入数据转换完成。