1. php的aes算法,加密时会存在空格,0,\0等方式进行补长,所以解密后需要进行trim操作,才能得到原数据串
2. aes加密后进行base64_encode,但是解密时,直接用aes进行解密,不需要先base64_decode.【这个操作很骚气】
function _decryptData($data,$password, $iv){
$decryptData=openssl_decrypt($data, 'aes-128-cbc', $password, OPENSSL_ZERO_PADDING, $iv);
$data =json_decode(trim($decryptData), true);
return $data;
}
function encryptData($data, $password, $iv){
$data = json_encode($data);//$data是一个数组,如果是字符串,请忽略此句.
$result = base64_encode(openssl_encrypt($data, 'aes-128-cbc', $password, OPENSSL_RAW_DATA, $iv));
return $result;
}
完整的!
#include "stdio.h"
#include "memory.h"
#include "time.h"
#include "stdlib.h"
#define PLAIN_FILE_OPEN_ERROR -1
#define KEY_FILE_OPEN_ERROR -2
#define CIPHER_FILE_OPEN_ERROR -3
#define OK 1
typedef char ElemType;
/*初始置换表IP*/
int IP_Table[64] = { 57,49,41,33,25,17,9,1,
59,51,43,35,27,19,11,3,
61,53,45,37,29,21,13,5,
63,55,47,39,31,23,15,7,
56,48,40,32,24,16,8,0,
58,50,42,34,26,18,10,2,
60,52,44,36,28,20,12,4,
62,54,46,38,30,22,14,6};
/*逆初始置换表IP^-1*/
int IP_1_Table[64] = {39,7,47,15,55,23,63,31,
38,6,46,14,54,22,62,30,
37,5,45,13,53,21,61,29,
36,4,44,12,52,20,60,28,
35,3,43,11,51,19,59,27,
34,2,42,10,50,18,58,26,
33,1,41,9,49,17,57,25,
32,0,40,8,48,16,56,24};
/*扩充置换表E*/
int E_Table[48] = {31, 0, 1, 2, 3, 4,
3, 4, 5, 6, 7, 8,
7, 8,9,10,11,12,
11,12,13,14,15,16,
15,16,17,18,19,20,
19,20,21,22,23,24,
23,24,25,26,27,28,
27,28,29,30,31, 0};
/*置换函数P*/
int P_Table[32] = {15,6,19,20,28,11,27,16,
0,14,22,25,4,17,30,9,
1,7,23,13,31,26,2,8,
18,12,29,5,21,10,3,24};
/*S盒*/
int S[8][4][16] =
/*S1*/
{{{14,4,13,1,2,15,11,8,3,10,6,12,5,9,0,7},
{0,15,7,4,14,2,13,1,10,6,12,11,9,5,3,8},
{4,1,14,8,13,6,2,11,15,12,9,7,3,10,5,0},
{15,12,8,2,4,9,1,7,5,11,3,14,10,0,6,13}},
/*S2*/
{{15,1,8,14,6,11,3,4,9,7,2,13,12,0,5,10},
{3,13,4,7,15,2,8,14,12,0,1,10,6,9,11,5},
{0,14,7,11,10,4,13,1,5,8,12,6,9,3,2,15},
{13,8,10,1,3,15,4,2,11,6,7,12,0,5,14,9}},
/*S3*/
{{10,0,9,14,6,3,15,5,1,13,12,7,11,4,2,8},
{13,7,0,9,3,4,6,10,2,8,5,14,12,11,15,1},
{13,6,4,9,8,15,3,0,11,1,2,12,5,10,14,7},
{1,10,13,0,6,9,8,7,4,15,14,3,11,5,2,12}},
/*S4*/
{{7,13,14,3,0,6,9,10,1,2,8,5,11,12,4,15},
{13,8,11,5,6,15,0,3,4,7,2,12,1,10,14,9},
{10,6,9,0,12,11,7,13,15,1,3,14,5,2,8,4},
{3,15,0,6,10,1,13,8,9,4,5,11,12,7,2,14}},
/*S5*/
{{2,12,4,1,7,10,11,6,8,5,3,15,13,0,14,9},
{14,11,2,12,4,7,13,1,5,0,15,10,3,9,8,6},
{4,2,1,11,10,13,7,8,15,9,12,5,6,3,0,14},
{11,8,12,7,1,14,2,13,6,15,0,9,10,4,5,3}},
/*S6*/
{{12,1,10,15,9,2,6,8,0,13,3,4,14,7,5,11},
{10,15,4,2,7,12,9,5,6,1,13,14,0,11,3,8},
{9,14,15,5,2,8,12,3,7,0,4,10,1,13,11,6},
{4,3,2,12,9,5,15,10,11,14,1,7,6,0,8,13}},
/*S7*/
{{4,11,2,14,15,0,8,13,3,12,9,7,5,10,6,1},
{13,0,11,7,4,9,1,10,14,3,5,12,2,15,8,6},
{1,4,11,13,12,3,7,14,10,15,6,8,0,5,9,2},
{6,11,13,8,1,4,10,7,9,5,0,15,14,2,3,12}},
/*S8*/
{{13,2,8,4,6,15,11,1,10,9,3,14,5,0,12,7},
{1,15,13,8,10,3,7,4,12,5,6,11,0,14,9,2},
{7,11,4,1,9,12,14,2,0,6,10,13,15,3,5,8},
{2,1,14,7,4,10,8,13,15,12,9,0,3,5,6,11}}};
/*置换选择1*/
int PC_1[56] = {56,48,40,32,24,16,8,
0,57,49,41,33,25,17,
9,1,58,50,42,34,26,
18,10,2,59,51,43,35,
62,54,46,38,30,22,14,
6,61,53,45,37,29,21,
13,5,60,52,44,36,28,
20,12,4,27,19,11,3};
/*置换选择2*/
int PC_2[48] = {13,16,10,23,0,4,2,27,
14,5,20,9,22,18,11,3,
25,7,15,6,26,19,12,1,
40,51,30,36,46,54,29,39,
50,44,32,46,43,48,38,55,
33,52,45,41,49,35,28,31};
/*对左移次数的规定*/
int MOVE_TIMES[16] = {1,1,2,2,2,2,2,2,1,2,2,2,2,2,2,1};
int ByteToBit(ElemType ch,ElemType bit[8]);
int BitToByte(ElemType bit[8],ElemType *ch);
int Char8ToBit64(ElemType ch[8],ElemType bit[64]);
int Bit64ToChar8(ElemType bit[64],ElemType ch[8]);
int DES_MakeSubKeys(ElemType key[64],ElemType subKeys[16][48]);
int DES_PC1_Transform(ElemType key[64], ElemType tempbts[56]);
int DES_PC2_Transform(ElemType key[56], ElemType tempbts[48]);
int DES_ROL(ElemType data[56], int time);
int DES_IP_Transform(ElemType data[64]);
int DES_IP_1_Transform(ElemType data[64]);
int DES_E_Transform(ElemType data[48]);
int DES_P_Transform(ElemType data[32]);
int DES_SBOX(ElemType data[48]);
int DES_XOR(ElemType R[48], ElemType L[48],int count);
int DES_Swap(ElemType left[32],ElemType right[32]);
int DES_EncryptBlock(ElemType plainBlock[8], ElemType subKeys[16][48], ElemType cipherBlock[8]);
int DES_DecryptBlock(ElemType cipherBlock[8], ElemType subKeys[16][48], ElemType plainBlock[8]);
int DES_Encrypt(char *plainFile, char *keyStr,char *cipherFile);
int DES_Decrypt(char *cipherFile, char *keyStr,char *plainFile);
/*字节转换成二进制*/
int ByteToBit(ElemType ch, ElemType bit[8]){
int cnt;
for(cnt = 0;cnt 8; cnt++){
*(bit+cnt) = (chcnt)1;
}
return 0;
}
/*二进制转换成字节*/
int BitToByte(ElemType bit[8],ElemType *ch){
int cnt;
for(cnt = 0;cnt 8; cnt++){
*ch |= *(bit + cnt)cnt;
}
return 0;
}
/*将长度为8的字符串转为二进制位串*/
int Char8ToBit64(ElemType ch[8],ElemType bit[64]){
int cnt;
for(cnt = 0; cnt 8; cnt++){
ByteToBit(*(ch+cnt),bit+(cnt3));
}
return 0;
}
/*将二进制位串转为长度为8的字符串*/
int Bit64ToChar8(ElemType bit[64],ElemType ch[8]){
int cnt;
memset(ch,0,8);
for(cnt = 0; cnt 8; cnt++){
BitToByte(bit+(cnt3),ch+cnt);
}
return 0;
}
/*生成子密钥*/
int DES_MakeSubKeys(ElemType key[64],ElemType subKeys[16][48]){
ElemType temp[56];
int cnt;
DES_PC1_Transform(key,temp);/*PC1置换*/
for(cnt = 0; cnt 16; cnt++){/*16轮跌代,产生16个子密钥*/
DES_ROL(temp,MOVE_TIMES[cnt]);/*循环左移*/
DES_PC2_Transform(temp,subKeys[cnt]);/*PC2置换,产生子密钥*/
}
return 0;
}
/*密钥置换1*/
int DES_PC1_Transform(ElemType key[64], ElemType tempbts[56]){
int cnt;
for(cnt = 0; cnt 56; cnt++){
tempbts[cnt] = key[PC_1[cnt]];
}
return 0;
}
/*密钥置换2*/
int DES_PC2_Transform(ElemType key[56], ElemType tempbts[48]){
int cnt;
for(cnt = 0; cnt 48; cnt++){
tempbts[cnt] = key[PC_2[cnt]];
}
return 0;
}
/*循环左移*/
int DES_ROL(ElemType data[56], int time){
ElemType temp[56];
/*保存将要循环移动到右边的位*/
memcpy(temp,data,time);
memcpy(temp+time,data+28,time);
/*前28位移动*/
memcpy(data,data+time,28-time);
memcpy(data+28-time,temp,time);
/*后28位移动*/
memcpy(data+28,data+28+time,28-time);
memcpy(data+56-time,temp+time,time);
return 0;
}
/*IP置换*/
int DES_IP_Transform(ElemType data[64]){
int cnt;
ElemType temp[64];
for(cnt = 0; cnt 64; cnt++){
temp[cnt] = data[IP_Table[cnt]];
}
memcpy(data,temp,64);
return 0;
}
/*IP逆置换*/
int DES_IP_1_Transform(ElemType data[64]){
int cnt;
ElemType temp[64];
for(cnt = 0; cnt 64; cnt++){
temp[cnt] = data[IP_1_Table[cnt]];
}
memcpy(data,temp,64);
return 0;
}
/*扩展置换*/
int DES_E_Transform(ElemType data[48]){
int cnt;
ElemType temp[48];
for(cnt = 0; cnt 48; cnt++){
temp[cnt] = data[E_Table[cnt]];
}
memcpy(data,temp,48);
return 0;
}
/*P置换*/
int DES_P_Transform(ElemType data[32]){
int cnt;
ElemType temp[32];
for(cnt = 0; cnt 32; cnt++){
temp[cnt] = data[P_Table[cnt]];
}
memcpy(data,temp,32);
return 0;
}
/*异或*/
int DES_XOR(ElemType R[48], ElemType L[48] ,int count){
int cnt;
for(cnt = 0; cnt count; cnt++){
R[cnt] ^= L[cnt];
}
return 0;
}
/*S盒置换*/
int DES_SBOX(ElemType data[48]){
int cnt;
int line,row,output;
int cur1,cur2;
for(cnt = 0; cnt 8; cnt++){
cur1 = cnt*6;
cur2 = cnt2;
/*计算在S盒中的行与列*/
line = (data[cur1]1) + data[cur1+5];
row = (data[cur1+1]3) + (data[cur1+2]2)
+ (data[cur1+3]1) + data[cur1+4];
output = S[cnt][line][row];
/*化为2进制*/
data[cur2] = (output0X08)3;
data[cur2+1] = (output0X04)2;
data[cur2+2] = (output0X02)1;
data[cur2+3] = output0x01;
}
return 0;
}
/*交换*/
int DES_Swap(ElemType left[32], ElemType right[32]){
ElemType temp[32];
memcpy(temp,left,32);
memcpy(left,right,32);
memcpy(right,temp,32);
return 0;
}
/*加密单个分组*/
int DES_EncryptBlock(ElemType plainBlock[8], ElemType subKeys[16][48], ElemType cipherBlock[8]){
ElemType plainBits[64];
ElemType copyRight[48];
int cnt;
Char8ToBit64(plainBlock,plainBits);
/*初始置换(IP置换)*/
DES_IP_Transform(plainBits);
/*16轮迭代*/
for(cnt = 0; cnt 16; cnt++){
memcpy(copyRight,plainBits+32,32);
/*将右半部分进行扩展置换,从32位扩展到48位*/
DES_E_Transform(copyRight);
/*将右半部分与子密钥进行异或操作*/
DES_XOR(copyRight,subKeys[cnt],48);
/*异或结果进入S盒,输出32位结果*/
DES_SBOX(copyRight);
/*P置换*/
DES_P_Transform(copyRight);
/*将明文左半部分与右半部分进行异或*/
DES_XOR(plainBits,copyRight,32);
if(cnt != 15){
/*最终完成左右部的交换*/
DES_Swap(plainBits,plainBits+32);
}
}
/*逆初始置换(IP^1置换)*/
DES_IP_1_Transform(plainBits);
Bit64ToChar8(plainBits,cipherBlock);
return 0;
}
/*解密单个分组*/
int DES_DecryptBlock(ElemType cipherBlock[8], ElemType subKeys[16][48],ElemType plainBlock[8]){
ElemType cipherBits[64];
ElemType copyRight[48];
int cnt;
Char8ToBit64(cipherBlock,cipherBits);
/*初始置换(IP置换)*/
DES_IP_Transform(cipherBits);
/*16轮迭代*/
for(cnt = 15; cnt = 0; cnt--){
memcpy(copyRight,cipherBits+32,32);
/*将右半部分进行扩展置换,从32位扩展到48位*/
DES_E_Transform(copyRight);
/*将右半部分与子密钥进行异或操作*/
DES_XOR(copyRight,subKeys[cnt],48);
/*异或结果进入S盒,输出32位结果*/
DES_SBOX(copyRight);
/*P置换*/
DES_P_Transform(copyRight);
/*将明文左半部分与右半部分进行异或*/
DES_XOR(cipherBits,copyRight,32);
if(cnt != 0){
/*最终完成左右部的交换*/
DES_Swap(cipherBits,cipherBits+32);
}
}
/*逆初始置换(IP^1置换)*/
DES_IP_1_Transform(cipherBits);
Bit64ToChar8(cipherBits,plainBlock);
return 0;
}
/*加密文件*/
int DES_Encrypt(char *plainFile, char *keyStr,char *cipherFile){
FILE *plain,*cipher;
int count;
ElemType plainBlock[8],cipherBlock[8],keyBlock[8];
ElemType bKey[64];
ElemType subKeys[16][48];
if((plain = fopen(plainFile,"rb")) == NULL){
return PLAIN_FILE_OPEN_ERROR;
}
if((cipher = fopen(cipherFile,"wb")) == NULL){
return CIPHER_FILE_OPEN_ERROR;
}
/*设置密钥*/
memcpy(keyBlock,keyStr,8);
/*将密钥转换为二进制流*/
Char8ToBit64(keyBlock,bKey);
/*生成子密钥*/
DES_MakeSubKeys(bKey,subKeys);
while(!feof(plain)){
/*每次读8个字节,并返回成功读取的字节数*/
if((count = fread(plainBlock,sizeof(char),8,plain)) == 8){
DES_EncryptBlock(plainBlock,subKeys,cipherBlock);
fwrite(cipherBlock,sizeof(char),8,cipher);
}
}
if(count){
/*填充*/
memset(plainBlock + count,'\0',7 - count);
/*最后一个字符保存包括最后一个字符在内的所填充的字符数量*/
plainBlock[7] = 8 - count;
DES_EncryptBlock(plainBlock,subKeys,cipherBlock);
fwrite(cipherBlock,sizeof(char),8,cipher);
}
fclose(plain);
fclose(cipher);
return OK;
}
/*解密文件*/
int DES_Decrypt(char *cipherFile, char *keyStr,char *plainFile){
FILE *plain, *cipher;
int count,times = 0;
long fileLen;
ElemType plainBlock[8],cipherBlock[8],keyBlock[8];
ElemType bKey[64];
ElemType subKeys[16][48];
if((cipher = fopen(cipherFile,"rb")) == NULL){
return CIPHER_FILE_OPEN_ERROR;
}
if((plain = fopen(plainFile,"wb")) == NULL){
return PLAIN_FILE_OPEN_ERROR;
}
/*设置密钥*/
memcpy(keyBlock,keyStr,8);
/*将密钥转换为二进制流*/
Char8ToBit64(keyBlock,bKey);
/*生成子密钥*/
DES_MakeSubKeys(bKey,subKeys);
/*取文件长度 */
fseek(cipher,0,SEEK_END);/*将文件指针置尾*/
fileLen = ftell(cipher); /*取文件指针当前位置*/
rewind(cipher); /*将文件指针重指向文件头*/
while(1){
/*密文的字节数一定是8的整数倍*/
fread(cipherBlock,sizeof(char),8,cipher);
DES_DecryptBlock(cipherBlock,subKeys,plainBlock);
times += 8;
if(times fileLen){
fwrite(plainBlock,sizeof(char),8,plain);
}
else{
break;
}
}
/*判断末尾是否被填充*/
if(plainBlock[7] 8){
for(count = 8 - plainBlock[7]; count 7; count++){
if(plainBlock[count] != '\0'){
break;
}
}
}
if(count == 7){/*有填充*/
fwrite(plainBlock,sizeof(char),8 - plainBlock[7],plain);
}
else{/*无填充*/
fwrite(plainBlock,sizeof(char),8,plain);
}
fclose(plain);
fclose(cipher);
return OK;
}
int main()
{
clock_t a,b;
a = clock();
DES_Encrypt("1.txt","key.txt","2.txt");
b = clock();
printf("加密消耗%d毫秒\n",b-a);
system("pause");
a = clock();
DES_Decrypt("2.txt","key.txt","3.txt");
b = clock();
printf("解密消耗%d毫秒\n",b-a);
getchar();
return 0;
}
Java有相关的实现类:具体原理如下
对于任意长度的明文,AES首先对其进行分组,每组的长度为128位。分组之后将分别对每个128位的明文分组进行加密。
对于每个128位长度的明文分组的加密过程如下:
(1)将128位AES明文分组放入状态矩阵中。
(2)AddRoundKey变换:对状态矩阵进行AddRoundKey变换,与膨胀后的密钥进行异或操作(密钥膨胀将在实验原理七中详细讨论)。
(3)10轮循环:AES对状态矩阵进行了10轮类似的子加密过程。前9轮子加密过程中,每一轮子加密过程包括4种不同的变换,而最后一轮只有3种变换,前9轮的子加密步骤如下:
● SubBytes变换:SubBytes变换是一个对状态矩阵非线性的变换;
● ShiftRows变换:ShiftRows变换对状态矩阵的行进行循环移位;
● MixColumns变换:MixColumns变换对状态矩阵的列进行变换;
● AddRoundKey变换:AddRoundKey变换对状态矩阵和膨胀后的密钥进行异或操作。
最后一轮的子加密步骤如下:
● SubBytes变换:SubBytes变换是一个对状态矩阵非线性的变换;
● ShiftRows变换:ShiftRows变换对状态矩阵的行进行循环移位;
● AddRoundKey变换:AddRoundKey变换对状态矩阵和膨胀后的密钥进行异或操作;
(4)经过10轮循环的状态矩阵中的内容就是加密后的密文。
AES的加密算法的伪代码如下。
在AES算法中,AddRoundKey变换需要使用膨胀后的密钥,原始的128位密钥经过膨胀会产生44个字(每个字为32位)的膨胀后的密钥,这44个字的膨胀后的密钥供11次AddRoundKey变换使用,一次AddRoundKey使用4个字(128位)的膨胀后的密钥。
三.AES的分组过程
对于任意长度的明文,AES首先对其进行分组,分组的方法与DES相同,即对长度不足的明文分组后面补充0即可,只是每一组的长度为128位。
AES的密钥长度有128比特,192比特和256比特三种标准,其他长度的密钥并没有列入到AES联邦标准中,在下面的介绍中,我们将以128位密钥为例。
四.状态矩阵
状态矩阵是一个4行、4列的字节矩阵,所谓字节矩阵就是指矩阵中的每个元素都是一个1字节长度的数据。我们将状态矩阵记为State,State中的元素记为Sij,表示状态矩阵中第i行第j列的元素。128比特的明文分组按字节分成16块,第一块记为“块0”,第二块记为“块1”,依此类推,最后一块记为“块15”,然后将这16块明文数据放入到状态矩阵中,将这16块明文数据放入到状态矩阵中的方法如图2-2-1所示。
块0
块4
块8
块12
块1
块5
块9
块13
块2
块6
块10
块14
块3
块7
块11
块15
图2-2-1 将明文块放入状态矩阵中
五.AddRoundKey变换
状态矩阵生成以后,首先要进行AddRoundKey变换,AddRoundKey变换将状态矩阵与膨胀后的密钥进行按位异或运算,如下所示。
其中,c表示列数,数组W为膨胀后的密钥,round为加密轮数,Nb为状态矩阵的列数。
它的过程如图2-2-2所示。
图2-2-2 AES算法AddRoundKey变换
六.10轮循环
经过AddRoundKey的状态矩阵要继续进行10轮类似的子加密过程。前9轮子加密过程中,每一轮要经过4种不同的变换,即SubBytes变换、ShiftRows变换、MixColumns变换和AddRoundKey变换,而最后一轮只有3种变换,即SubBytes变换、ShiftRows变换和AddRoundKey变换。AddRoundKey变换已经讨论过,下面分别讨论余下的三种变换。
1.SubBytes变换
SubBytes是一个独立作用于状态字节的非线性变换,它由以下两个步骤组成:
(1)在GF(28)域,求乘法的逆运算,即对于α∈GF(28)求β∈GF(28),使αβ =βα = 1mod(x8 + x4 + x3 + x + 1)。
(2)在GF(28)域做变换,变换使用矩阵乘法,如下所示:
由于所有的运算都在GF(28)域上进行,所以最后的结果都在GF(28)上。若g∈GF(28)是GF(28)的本原元素,则对于α∈GF(28),α≠0,则存在
β ∈ GF(28),使得:
β = gαmod(x8 + x4 + x3 + x + 1)
由于g255 = 1mod(x8 + x4 + x3 + x + 1)
所以g255-α = β-1mod(x8 + x4 + x3 + x + 1)
根据SubBytes变换算法,可以得出SubBytes的置换表,如表2-2-1所示,这个表也叫做AES的S盒。该表的使用方法如下:状态矩阵中每个元素都要经过该表替换,每个元素为8比特,前4比特决定了行号,后4比特决定了列号,例如求SubBytes(0C)查表的0行C列得FE。
表2-2-1 AES的SubBytes置换表
它的变换过程如图2-2-3所示。
图2-2-3 SubBytes变换
AES加密过程需要用到一些数学基础,其中包括GF(2)域上的多项式、GF(28)域上的多项式的计算和矩阵乘法运算等,有兴趣的同学请参考相关的数学书籍。
2.ShiftRows变换
ShiftRows变换比较简单,状态矩阵的第1行不发生改变,第2行循环左移1字节,第3行循环左移2字节,第4行循环左移3字节。ShiftRows变换的过程如图2-2-4所示。
图2-2-4 AES的ShiftRows变换
3.MixColumns变换
在MixColumns变换中,状态矩阵的列看作是域GF(28)的多项式,模(x4+1)乘以c(x)的结果:
c(x)=(03)x3+(01)x2+(01)x+(02)
这里(03)为十六进制表示,依此类推。c(x)与x4+1互质,故存在逆:
d(x)=(0B)x3+(0D)x2+(0G)x+(0E)使c(x)•d(x) = (D1)mod(x4+1)。
设有:
它的过程如图2-2-5所示。
图2-2-5 AES算法MixColumns变换
七.密钥膨胀
在AES算法中,AddRoundKey变换需要使用膨胀后的密钥,膨胀后的密钥记为子密钥,原始的128位密钥经过膨胀会产生44个字(每个字为32位)的子密钥,这44个字的子密钥供11次AddRoundKey变换使用,一次AddRoundKey使用4个字(128位)的膨胀后的密钥。
密钥膨胀算法是以字为基础的(一个字由4个字节组成,即32比特)。128比特的原始密钥经过膨胀后将产生44个字的子密钥,我们将这44个密钥保存在一个字数组中,记为W[44]。128比特的原始密钥分成16份,存放在一个字节的数组:Key[0],Key[1]……Key[15]中。
在密钥膨胀算法中,Rcon是一个10个字的数组,在数组中保存着算法定义的常数,分别为:
Rcon[0] = 0x01000000
Rcon[1] = 0x02000000
Rcon[2] = 0x04000000
Rcon[3] = 0x08000000
Rcon[4] = 0x10000000
Rcon[5] = 0x20000000
Rcon[6] = 0x40000000
Rcon[7] = 0x80000000
Rcon[8] = 0x1b000000
Rcon[9] = 0x36000000
另外,在密钥膨胀中包括其他两个操作RotWord和SubWord,下面对这两个操作做说明:
RotWord( B0,B1,B2,B3 )对4个字节B0,B1,B2,B3进行循环移位,即
RotWord( B0,B1,B2,B3 ) = ( B1,B2,B3,B0 )
SubWord( B0,B1,B2,B3 )对4个字节B0,B1,B2,B3使用AES的S盒,即
SubWord( B0,B1,B2,B3 ) = ( B’0,B’1,B’2,B’3 )
其中,B’i = SubBytes(Bi),i = 0,1,2,3。
密钥膨胀的算法如下:
八.解密过程
AES的加密和解密过程并不相同,首先密文按128位分组,分组方法和加密时的分组方法相同,然后进行轮变换。
AES的解密过程可以看成是加密过程的逆过程,它也由10轮循环组成,每一轮循环包括四个变换分别为InvShiftRows变换、InvSubBytes变换、InvMixColumns变换和AddRoundKey变换;
这个过程可以描述为如下代码片段所示:
九.InvShiftRows变换
InvShiftRows变换是ShiftRows变换的逆过程,十分简单,指定InvShiftRows的变换如下。
Sr,(c+shift(r,Nb))modNb= Sr,c for 0 r 4 and 0 ≤ c Nb
图2-2-6演示了这个过程。
图2-2-6 AES算法InvShiftRows变换
十.InvSubBytes变换
InvSubBytes变换是SubBytes变换的逆变换,利用AES的S盒的逆作字节置换,表2-2-2为InvSubBytes变换的置换表。
表2-2-2 InvSubBytes置换表
十一.InvMixColumns变换
InvMixColumns变换与MixColumns变换类似,每列乘以d(x)
d(x) = (OB)x3 + (0D)x2 + (0G)x + (0E)
下列等式成立:
( (03)x3 + (01)x2 + (01)x + (02) )⊙d(x) = (01)
上面的内容可以描述为以下的矩阵乘法:
十二.AddRoundKey变换
AES解密过程的AddRoundKey变换与加密过程中的AddRoundKey变换一样,都是按位与子密钥做异或操作。解密过程的密钥膨胀算法也与加密的密钥膨胀算法相同。最后状态矩阵中的数据就是明文。
有界面,我这里有个,但是是c#语言的,你以为如何?
下面是c版本的
AES加密算法源代码
//AES.h
#define decrypt TRUE
#define encrypt FALSE
#define TYPE BOOL
typedef struct _AES{
int Nb;
int Nr;
int Nk;
unsigned long *Word;
unsigned long *State;
}AES;
/*
加密数据
byte *input 明文
byte *inSize 明文长
byte *out 密文存放的地方
byte *key 密钥key
byte *keySize 密钥长
*/
void Cipher(
unsigned char* input,
int inSize,
unsigned char* out,
unsigned char* key,
int keySize);
/*
解密数据
byte *input 密文
int *inSize 密文长
byte *out 明文存放的地方
byte *key 密钥key
int *keySize 密钥长
*/
void InvCipher(
unsigned char* input,
int inSize,
unsigned char* out,
unsigned char* key,
int keySize);
/*
生成加密用的参数AES结构
int inSize 块大小
byte* 密钥
int 密钥长
unsigned long 属性(标实类型)
返回AES结构指针
*/
AES *InitAES(AES *aes,
int inSize,
unsigned char* key,
int keySize, TYPE type);
/*
生成加密用的参数AES结构
int inSize 块大小
byte* 密钥
int 密钥长
返回AES结构指针
*/
AES *InitAES(
int inSize,
unsigned char* key,
int keySize, BOOL );
/*
加密时进行Nr轮运算
AES * aes 运行时参数
*/
void CipherLoop(
AES *aes);
/*
解密时进行Nr轮逆运算
AES * aes 运行时参数
*/
void InvCipherLoop(
AES *aes);
/*
释放AES结构和State和密钥库word
*/
void freeAES(
AES *aes);
//AES.cpp
#include "stdafx.h"
#include
#include
#include "AES.h"
unsigned char* SubWord(unsigned char* word);
unsigned long* keyExpansion(unsigned char* key, int Nk, int Nr,int);
/*
加密数据
byte *input 明文
byte *inSize 明文长
byte *out 密文存放的地方
byte *key 密钥key
byte *keySize 密钥长
*/
void Cipher(unsigned char* input, int inSize, unsigned char* out, unsigned char* key, int keySize)
{
AES aes ;
InitAES(aes,inSize,key,keySize,encrypt);
memcpy(aes.State,input,inSize);
CipherLoop(aes);
memcpy(out,aes.State,inSize);
}
/*
解密数据
byte *input 密文
int *inSize 密文长
byte *out 明文存放的地方
byte *key 密钥key
int *keySize 密钥长
*/
void InvCipher(unsigned char* input, int inSize, unsigned char* out, unsigned char* key, int keySize)
{
AES aes;
InitAES(aes,inSize,key,keySize,decrypt);
memcpy(aes.State,input,inSize);
InvCipherLoop(aes);
memcpy(aes.State,out,inSize);
}
/*
生成加密用的参数AES结构
int inSize 块大小
byte* 密钥
int 密钥长
返回AES结构指针
*/
AES *InitAES(AES *aes,int inSize, unsigned char *key, int keySize, TYPE type)
{
int Nb = inSize 2,
Nk = keySize 2,
Nr = Nb Nk ? Nk:Nb+6;
aes-Nb = Nb;
aes-Nk = Nk;
aes-Nr = Nr;
aes-Word = keyExpansion(key,Nb,Nr,Nk);
aes-State = new unsigned long[Nb+3];
if(type)
aes-State += 3;
return aes;
}
/*
生成加密用的参数AES结构
int inSize 块大小
byte* 密钥
int 密钥长
返回AES结构指针
*/
AES *InitAES(int inSize, unsigned char* key, int keySize,unsigned long type)
{
return InitAES(new AES(),inSize,key,keySize,type);
}
/*
*/
void CipherLoop(AES *aes)
{
unsigned char temp[4];
unsigned long *word8 = aes-Word,
*State = aes-State;
int Nb = aes-Nb,
Nr = aes-Nr;
int r;
for (r = 0; r Nb; ++r)
{
State[r] ^= word8[r];
}
for (int round =1; round {
word8 += Nb;
/*
假设Nb=4;
---------------------
| s0 | s1 | s2 | s3 |
---------------------
| s4 | s5 | s6 | s7 |
---------------------
| s8 | s9 | sa | sb |
---------------------
| sc | sd | se | sf |
---------------------
| | | | |
---------------------
| | | | |
---------------------
| | | | |
---------------------
*/
memcpy(State+Nb,State,12);
/*
Nb=4;
---------------------
| s0 | | | |
---------------------
| s4 | s5 | | |
---------------------
| s8 | s9 | sa | |
---------------------
| sc | sd | se | sf |
---------------------
| | s1 | s2 | s3 |
---------------------
| | | s6 | s7 |
---------------------
| | | | sb |
---------------------
*/
for(r =0; r {
/*
temp = {Sbox[s0],Sbox[s5],Sbox[sa],Sbox[sf]};
*/
temp[0] = Sbox[*((unsigned char*)State)];
temp[1] = Sbox[*((unsigned char*)(State+1)+1)];
temp[2] = Sbox[*((unsigned char*)(State+2)+2)];
temp[3] = Sbox[*((unsigned char*)(State+3)+3)];
*((unsigned char*)State) = Log_02[temp[0]] ^ Log_03[temp[1]] ^ temp[2] ^ temp[3];
*((unsigned char*)State+1) = Log_02[temp[1]] ^ Log_03[temp[2]] ^ temp[3] ^ temp[0];
*((unsigned char*)State+2) = Log_02[temp[2]] ^ Log_03[temp[3]] ^ temp[0] ^ temp[1];
*((unsigned char*)State+3) = Log_02[temp[3]] ^ Log_03[temp[0]] ^ temp[1] ^ temp[2];
*State ^= word8[r];
State++;
}
State -= Nb;
}
memcpy(State+Nb,State,12);
word8 += Nb;
for(r =0; r {
*((unsigned char*)State) = Sbox[*(unsigned char*)State];
*((unsigned char*)State+1) = Sbox[*((unsigned char*)(State+1)+1)];
*((unsigned char*)State+2) = Sbox[*((unsigned char*)(State+2)+2)];
*((unsigned char*)State+3) = Sbox[*((unsigned char*)(State+3)+3)];
*State ^= word8[r];
State++;
}
}
/*
解密时进行Nr轮逆运算
AES * aes 运行时参数
*/
void InvCipherLoop(AES *aes)
{
unsigned long *Word = aes-Word,
*State = aes-State;
int Nb = aes-Nb,
Nr = aes-Nr;
unsigned char temp[4];
int r =0;
Word += Nb*Nr;
for (r = 0; r Nb; ++r)
{
State[r] ^= Word[r];
}
State -= 3;
for (int round = Nr-1; round 0; --round)
{
/*
假设Nb=4;
---------------------
| | | | |
---------------------
| | | | |
---------------------
| | | | |
---------------------
| s0 | s1 | s2 | s3 |
---------------------
| s4 | s5 | s6 | s7 |
---------------------
| s8 | s9 | sa | sb |
---------------------
| sc | sd | se | sf |
---------------------
*/
memcpy(State,State+Nb,12);
/*
Nb=4;
---------------------
| | | | s7 |
---------------------
| | | sa | sb |
---------------------
| | sd | se | sf |
---------------------
| s0 | s1 | s2 | s3 |
---------------------
| s4 | s5 | s6 | |
---------------------
| s8 | s9 | | |
---------------------
| sc | | | |
---------------------
*/
Word -= Nb;
State += Nb+2;
for(r = Nb-1; r = 0; r--)
{
/*
temp = {iSbox[s0],iSbox[sd],iSbox[sa],iSbox[s7]};
*/
temp[0] = iSbox[*(byte*)State];
temp[1] = iSbox[*((byte*)(State-1)+1)];
temp[2] = iSbox[*((byte*)(State-2)+2)];
temp[3] = iSbox[*((byte*)(State-3)+3)];
*(unsigned long*)temp ^= Word[r];
*(unsigned char*)State = Log_0e[temp[0]] ^ Log_0b[temp[1]] ^ Log_0d[temp[2]] ^ Log_09[temp[3]];
*((unsigned char*)State+1) = Log_0e[temp[1]] ^ Log_0b[temp[2]] ^ Log_0d[temp[3]] ^ Log_09[temp[0]];
*((unsigned char*)State+2) = Log_0e[temp[2]] ^ Log_0b[temp[3]] ^ Log_0d[temp[0]] ^ Log_09[temp[1]];
*((unsigned char*)State+3) = Log_0e[temp[3]] ^ Log_0b[temp[0]] ^ Log_0d[temp[1]] ^ Log_09[temp[2]];
State --;
}
State -= 2;
}
Word -= Nb;
memcpy(State,State+Nb,12);
State += Nb+2;
for(r = Nb-1; r = 0; r--)
{
*(unsigned char*)State = iSbox[*(unsigned char*)State];
*((unsigned char*)State+1) = iSbox[*((unsigned char*)(State-1)+1)];
*((unsigned char*)State+2) = iSbox[*((unsigned char*)(State-2)+2)];
*((unsigned char*)State+3) = iSbox[*((unsigned char*)(State-3)+3)];
*State ^= Word[r];
State --;
}
}
/*
*--------------------------------------------
*|k0|k1|k2|k3|k4|k5|k6|k7|k8|k9|.......|Nk*4|
*--------------------------------------------
*Nr轮密钥库
*每个密钥列长度为Nb
*---------------------
*| k0 | k1 | k2 | k3 |
*---------------------
*| k4 | k5 | k6 | k7 |
*---------------------
*| k8 | k9 | ka | kb |
*---------------------
*| kc | kd | ke | kf |
*---------------------
*/
unsigned long* keyExpansion(byte* key, int Nb, int Nr, int Nk)
{
unsigned long *w =new unsigned long[Nb * (Nr+1)]; // 4 columns of bytes corresponds to a word
memcpy(w,key,Nk2);
unsigned long temp;
for (int c = Nk; c Nb * (Nr+1); ++c)
{
//把上一轮的最后一行放入temp
temp = w[c-1];
//判断是不是每一轮密钥的第一行
if (c % Nk == 0)
{
//左旋8位
temp = (temp8)|(temp24);
//查Sbox表
SubWord((byte*)temp);
temp ^= Rcon[c/Nk];
}
else if ( Nk 6 (c % Nk == 4) )
{
SubWord((byte*)temp);
}
//w[c-Nk] 为上一轮密钥的第一行
w[c] = w[c-Nk] ^ temp;
}
return w;
}
unsigned char* SubWord(unsigned char* word)
{
word[0] = Sbox[ word[0] ];
word[1] = Sbox[ word[1] ];
word[2] = Sbox[ word[2] ];
word[3] = Sbox[ word[3] ];
return word;
}
/*
释放AES结构和State和密钥库word
*/
void freeAES(AES *aes)
{
// for(int i=0;iNb;i++)
// {
// printf("%d\n",i);
// free(aes-State[i]);
// free(aes-Word[i]);
// }
// printf("sdffd");
}
AES加密过程涉及到 4 种操作,分别是字节替代、行移位、列混淆和轮密钥加。
1.字节替换:字节代替的主要功能是通过S盒完成一个字节到另外一个字节的映射。
2.行移位:行移位的功能是实现一个4x4矩阵内部字节之间的置换。
4.轮密钥加:加密过程中,每轮的输入与轮密钥异或一次(当前分组和扩展密钥的一部分进行按位异或);因为二进制数连续异或一个数结果是不变的,所以在解密时再异或上该轮的密钥即可恢复输入。
5.密钥扩展:其复杂性是确保算法安全性的重要部分。当分组长度和密钥长度都是128位时,AES的加密算法共迭代10轮,需要10个子密钥。AES的密钥扩展的目的是将输入的128位密钥扩展成11个128位的子密钥。AES的密钥扩展算法是以字为一个基本单位(一个字为4个字节),刚好是密钥矩阵的一列。因此4个字(128位)密钥需要扩展成11个子密钥,共44个字。