在漫长的暑假里,我读了一本有趣的书--巧破谜案。这本书把一些原本枯燥无味的知识变得活学活用起来,还有很强的带入感,把你深深的吸引进书中的故事里。下面,我来和大家谈谈我读完的感受吧。
书中分别讲了几个知识点,有倍数关系,计算,用纵轴和横轴找位置,对称图形,分数,平移,乘法的积加减和除法。令我印象最深的是平移,书中把它带入到一个故事中:当到窃贼把珠宝藏起来时给了他的同伙一个纸条,告诉他们宝藏在哪。而你要负责把珠宝找到并还给它们的主人--那个百万富翁。纸条告诉你该向那边走几个格子,书中的画上标注着方向,而你要找到按照纸条上叙述的最后位置。这一题,不是普通试卷上的黑白图片应用题,而是趣味的小练习,让人做起来久而不腻。
这本书不光有题考验了同学们的数学知识,还有一些小知识丰富了大家的科学知识。在你“绞尽脑汁”算完了题目后,这本书还告诉你一些常识,如怎么采集指纹,怎么收集血样,如何提取“立体”鞋印,进入犯罪现场需要准备什么......其中,最令我感兴趣的是提取鞋印,用专用塑料框插在鞋印周围,倒入固定剂,再取出送往实验室。除了需要你动脑筋想办法的趣味习题,还有让你增长知识的小贴士,就更突出了《巧破谜案》这本书让人读起来久而不腻的特点。
《巧破谜案》是本神奇的数学书,在趣味中学习,在学习中趣味,让数学的知识得到真正的应用,把知识点都变得“活”起来,正如这本书的英文名“using maths”(应用数学)的含义一样,这本书让数学和故事有了联系,才有了趣味。
《神奇的数学》读后感 篇1
数学作为一门基础科学,其重要性不言而喻,在生活中,数学是一种能将各类生活问题简化到极致的秘密武器,他使用的广泛性极大,小到解决生活问题,大到探索宇宙。预测未来。
《神奇的数学》一书是将各种数学小游戏和众多数学理论以及数学家们的观点和处理数学问题的方法集于一体的数学百宝箱,我哦们可以从中汲取大量的知识。
我最喜欢的是有关质数的一章。质数,即是用于建筑所有数字的砖块。用一个书中的观点来讲,质数,正如原子,分子是由无数原子构建成的,数字2,3,5这些最基础的质数,就相当于数学世界里的氢原子,氦原子和锂原子。这也就是它们在数学中拥有重要地位的原因。在阅读这本书的时候,我很惊奇的发现了一点:那些有理有据的理论的诞生有时仅仅只是由于一个普普通通的发现中得出的,在质数一章中,捉着屡次用皇马队队员的球衣提出疑问,最终证明了为什么,他也从美洲蝉生活的规律入手,经过严谨的思考和有理有据的猜测,让我学会以数学的眼光看待世界。
人类自能够交流以来,就无时无刻提出许多问题,试图猜测未来,掌握环境。数学是人类创造出来的最强大的工具,帮助我们应对生存中的这个狂野而繁杂的世界。既然数数学是帮助人类发展的重要工具,那么《神奇的数学》中肯定少不了这一篇章,的确,从第二章到第四章全部都是有关生活中的数学,像“不可捉摸的形状之谜”“连胜秘诀”都可以以数学解释生活中的现象,令我对数学的神奇惊叹不已。
另外,书中也涉及到了许多中国元素,这一点颇令我意外,毕竟是英国人写的数嘛。比如,在第一章中,作者带领我们巡视了各个古代文明中的数字写法,其中自然包括中国的汉子数学。而在讲述二进制问题的时候,作者则提到了二进制的发明者莱布尼茨收到中国《易经》及北宋易学家邵雍的影响。此外还有一些,这此就不一一列举了。
在所有有趣的故事和游戏之中,作者潜移默化地向我们展示了几何的精妙,代数的严密,逻辑的美妙,拓扑的强大等种种数学学科的精髓之处。
音乐家认为音乐可以表达整个世界,作家认为文字可以描述整个世界,物理学家认为物理决定着所有的一切,在阅读本书的同时,我已经彻头彻尾的变成了一个数学的信徒。
《神奇的数学》读后感 篇2
拿到这本小小的,比手掌大的书,封面上设计独特的小黄人,然后都顶似乎有东西,到底是什么呢,是小孩看的绘本?是大人看的数字书?好奇的翻开来,才发现这是一本非常奇特有趣的图文并茂的,与生活密切相关的数字书。
大部分文科生或都对数学表示头疼,他们感性的思维里不能兼容理性的知识,我有个同学学习数学完全靠背诵,结果可想而知,我觉得很重要的一个原因是对数字没有兴趣,继而对数学有种恐惧和拒绝的心态,但看到日本作者写的这本《神奇的数字世界》简直有趣极了,数字不再是抽象的理性的东东,而是和生活中的很多方面紧密相关。
作者的目录非常有特色,为了表示数字的形状、数字的频道、数字的标尺、数字与身体、数字与竹林这些篇章,作者专门画了小黄人的不同形态,一下子感性化了好多,这些抽象的概念在图示中显示了“形象”的魅力,让人很有读下去的欲望。
《数字的形状》中作者从小讲到大、从古讲到今,把一些比较宏大的数字理念融会贯通到他好玩的叙述与想象的图画中;《数字的频道》中几乎全是图示,让我们看到数字在生活中方方面面的用处,最终揭示了数字的频道就是单位这个“真理”,更为“人文”的是,连人的情绪中的“单位”也都一一道来,很有历史文化底蕴,作者的知识之广博和融会贯通的.能力体现在每个章节中,越看越有趣,越看越想看。
不得不说《神奇的数字世界》最大两点是图画,不论是两个跨页图的震撼,还是某个细节的描画,都显示了作者超强的绘画能力。我们经常感叹于某些画家的写实能力,画得实在太像了,但是这个作者更技高一筹,把“数字”这样抽象的概念,通过各种形象化的图示表达出来,又很有内涵,画得实在太好了。如果每个学生有这样一本书在手,肯定会爱上数字,爱上数学的。
《神奇的数学》读后感 篇3
读这本书是因为朋友的差评:“太无聊了,日本哥们压力大到用无聊解压,真的看不下去。”
我向来好奇心重,作者的大便书在国内外如此畅销,怎么会low到这个程度?好奇心就是动力,一定要评下无聊度数,反正姐也是亚历山大,实在无聊也顺便解压了。
带着这个有色眼镜,我开始批判性阅读。
没想到的是,从无聊开始,到有聊还没结束,我一直被这本书引领着,开启了更上一层的快乐生活。
作者的画风还是那么独树一帜,用最简单的笔画画出的却是传奇,看似小儿科,其实却是大家的范;文字不多,提纲挈领,点到为止,留更多的发挥空间让读者去思考,可谓仁者见仁智者见智;书中涵盖的内容非常宽泛,把抽象而枯燥的数字形象化具体化,引入生活、工作,通过思维的改变,让我们获得发现美和乐趣的能力。
通过这些小的图文并茂的实例,我掌握了送礼的艺术、定价的策略、消费的陷阱、目标制定的技巧、绩效方案的策略,并把这些融入到生活和工作中,起到了非常好的效果。同时了解了符合人性的思维架构并建立之,在很多方案的设计中运用,大大提高了方案通过的成功率!
关于竹节的篇章,我自己也受益匪浅,生活未必总是多姿多彩的,但如果我们拥有了发现和创造爱或美的能力,我们总会拥有快乐,因为我们拥有了创造快乐的能力。自己快乐了,我们会带给身边的人快乐,生活就不一样了!
看似浅显的漫画书,其实蕴含了很多的人生哲理,这个浮夸的时代,需要静下心来品读!
书是不是无聊,你也来试试!
初中阶段主要研究知识结构、思想方法、能力培养等。
有同学们将初中学习的内容画了一张图,我把它称为知识树,四个板块(数与代数、图形与几何、统计与概率 、综合与实践)非常地清楚,每个板块包括了哪些内容也一目了然,这就是我们讲的知识结构。
什么是思想方法呢?简单地说,数学上的思想主要指抽象的思想、推理的思想、模型的思想、审美的思想。
能力培养主要是一些关于数感、符号意识、空间观念、几何直观、数据分析、运算能力、推理能力和模型思想等能力的提升。
学好初中数学的奥秘 ——入门、入理、入迷
一、入门——克服畏难心理、养成良好习惯
数学是研究现实世界数量关系和空间形式的一门科学。提到数学,有些人会理解为:数学、数学,就是关于数的一些学问。其实,在初中,数学,不仅仅要研究有关数的学问,如有理数、无理数等,还要学习一些图形的问题,比如研究三角形、四边形、圆等基本图形,以及这些图形的性质、判定等内容,此外还要学习统计概率等相关知识。
(一)你喜欢数学,数学就会喜欢你
(二)想学好数学就要有好的习惯
什么是一个人忘不掉的呢?显然,习惯是忘不掉的,因为习惯是一种相对稳定的自动化了的行为。学习习惯是指为达到好的学习效果而形成的一种学习上的自动倾向性,是在学习过程中经过反复练习形成并发展,成为一种个体需要的自动化学习行为方式。我们很多同学从小学到现在,已经养成了一些习惯,有些是好的习惯,有些可能是不好的习惯,好的习惯要保留,不好的习惯到了初中就要改了,想学好数学就要有好的习惯。
1.养成自主学习的习惯
自主学习习惯有自学与预习习惯、独立训练与复习习惯、学后反思与总结习惯(方法归纳)、学后巩固与纠错的习惯(错题整理等)、即时反馈与评价的习惯(测试等)等。如养成预习的习惯就很有必要。预习就是预先学习,是学习成功的关键一步。“不打无准备之仗”,此乃兵家之常识,预习是学好数学的一个必不可少的环节,它有助于把自己理解的东西与课堂学习的内容作比较,提高听课效率。预习时先要想一想,以前学习了什么知识,接下来该学习什么了?自己来个“预测”。这样有利于提高我们对知识的理解,养成良好的学习数学的思维习惯。
当然,自主学习的习惯还有如复习的习惯、反思的习惯、纠错的习惯、做题的习惯等等。
2.养成课堂学习的习惯
课堂学习习惯有专注听课的习惯、课堂记笔记的习惯、尊重与欣赏老师的习惯、积极思考的习惯、即时完成学习任务的习惯、反思与质疑的习惯、即时检测学习的习惯等。
课堂学习的效率高低直接影响学习的效果。因为课堂学习是获取知识的主要来源,是发展智力的重要途径。要养成课堂上认真听课、专注倾听老师讲解和同学们讨论交流的习惯,要养成记笔记并积极思考的习惯,同时注重理解和观察,重视自己对数学知识学习,学会反思和质疑,不放过任何问题和疑点,重视老师的规范表达,追求高效的课堂学习效率。
二、入理——弄懂数学语言、领悟思想方法
数学学习过程是培养理性思维的重要的途径,通过平时学习的各种方法、进行的各种练习,让我们掌握逻辑推理的能力、理性思维的方法等。如,电视上经常大家看到,说某个地方发生了一起盗窃案,说某样东西被偷了,警察看完监控后可能会获得信息:这个小偷身高大概多高,体重大概多重等。我们很多同学就很好奇,警察是怎么知道的呢?难道就从监控里面看,这个监控里面的人很小,他怎么知道身高是多少,体重是多少?其实,就就用到了数学上的逻辑推理。比如,现在这张桌子1米高,在监控录像屏幕上是10cm,而监控里像屏幕上的嫌疑人是17cm,那么可以推断生活中的这个嫌疑人1.7米左右。当然,这个知识等到了初三学完相似以后就非常简单了。
三、入迷——联系生活实际、体会数学应用
(一)用数学的思维分析问题
(二)用数学的策略解决问题
生活中有这样一个例子:某航班每次约有100名乘客。若飞行中飞机失事的概率为p=0.000 05,一家保险公司要为乘客保险,许诺飞机一旦失事,向每位乘客赔偿40万元人民币。平均来说,保险公司应该如何收取保险费呢?
设保险公司向每位乘客收取保险费x元。在n次飞行中,保险费收入共100nx元,平均失事np次,平均赔偿400 000×100×np,即40 000 000np元。保险公司必须保证收入不小于支出,也就是100nx ≥40 000 000np,即100nx ≥40 000 000×n×0.00 005,100nx≥2 000n,x≥20。所以保险公司向每位乘客收取的保险费应不低于20元。
生活中类似的例子很多,如果我们通过建立一个方程或不等式的模型来解决问题,就容易得多,这就是用数学的策略解决问题。
(三)用数学家的眼光看世界
生活当中经常有这样的例子:用抽签的方法从3名同学中选1名去参加某音乐会。事先准备3张相同的小纸条,并在1张纸条画上记号,其余2张纸条不画.把3张纸条折叠后放入一个盒子中搅匀,然后让3名同学去摸纸条。抽到有记号的人参加,先抽的人有利还是后抽的人有利呢?
遇到这样的问题,很多同学很困惑:如果先抽的人把中奖的这张抽走了,其他人就抽不到了,那么先抽的人合算;如果先抽的人抽不到,那么,能中奖的这张还在这里,那么后抽的人合算。其实到底是先抽的合算,还是后抽的合算,这就是我们数学上的概率。我们不妨列一张表:
把所有的情况都列出来,你会发现,其实不管是第一个人,第二个还是第三个人,他抽到的概率都是,因此先抽后抽一个样。这就是我们用数学家的眼光看现实世界中的问题。
数学家华罗庚教授在一次对中学生的演讲中也讲过类似的问题,他在演讲中指着讲台上的茶杯问大家:“你们想过吗?为什么茶杯盖不会掉到茶杯里面去呢?”同学们对这个问题都不屑一顾,想都不想,就说:“这还要问吗?盖子比茶杯口大嘛!”“真是这个原因吗?”华先生接下来又问:“有一种长方形的饼干盒,它的盖子也比口大,可是一不小心盖子还是会掉到盒子里去!这又是什么原因呢?”这回,引起了大家的思考,一会儿,有同学有所发现,说:“这是因为长方形盒子对角线的长度,大于盒盖子的长边的长,当然更大于短边的长度,所以沿着盒子的对角线方向,盖子很容易掉进去。”紧接着就有同学补充说:“问题在于盒子和盖子的形状,而圆形的所有直径相等,盖子的直径一定大于杯口的直径,所以盖子不会掉进茶杯里面去。”可是华先生并不满足于这样的答复。他进一步追问:“那除了做成圆形以外,还有什么形状的盒子,它的盖子不会掉进去呢?你能画出这样的图形吗?”
遇到类似的问题,如果我们都以数学家的眼光来看,那么,我们的数学学习一定会变得轻松自然。
2.初中数学怎么学
学习数学,首先要深刻理解概念。数学的很多概念都是比较抽象的,比如刚上初一就有无理数概念,无限不循环小数就叫无理数。这个概念貌似简单,但学生的理解却是比较困难,比如,对于是不是无理数,由22÷7=3.14……,很多同学就以为是无理数,其实,22÷7=3.142857142857……,这是一个循环小数,所以在平时学习的时候,就要理解无限不循环小数的意义。当然,这样的例子很多,如菱形的概念、中位线的概念等等,学习时都要对概念深刻理解。
学习数学,还要关注思想方法。三国时,曹操的一位朋友用船给他送来一头大象,曹操很想知道大象的重量,可大象太重无法直接称量,众大臣冥思苦想仍不得法!这时,聪明的曹冲想到了一个方法,就是先把大象牵到船上,在船身刻上水位线,再从船上牵下大象,把石头一块块装上船,直到水位线与大象在船上时刻划的水位线相同,然后卸下石头,称出石头重量。由此间接测出大象的体重,曹冲把不能直接称量的大象体重转化为能直接称量的石头重量,这其实体现了一种数学思想——转化思想。我们在数学上很多问题都是这样,把我们生疏的东西,转化为我们熟悉的,把我们没有学过的知识,转化为我们学过的知识等等,这就叫转化。人们在点钱时通常先将钱分类,把相同面值的钱整理在一起;商场里的商品也总是分类摆放……,分类是根据数学本质属性的相同点和不同点,将数学研究对象分为不同种类的一种数学思想方法。如:我们把实数分为有理数和无理数,把整式分为单项式和多项式,把三角形分为锐角三角形、直角三角形、钝角三角形,直线与圆的位置关系可分为相离、相切、相交三类……。通过分类,可以使复杂的问题变得简单明了,易于解决。
学习数学,还要理性对待考试。经常会有听到有同学抱怨:我平时学习也蛮认真的,作业完成的质量也蛮高,为什么一到考试成绩就不太理想呢?这样的困惑说明掌握必要的数学考试方法是非常必要的。实际上,数学考试方法和数学学习方法一样也是有规律可循的,掌握了一些数学考试的常见方法,会让同学们的数学考试“如虎添翼”;相反,如果数学考试方法运用不恰当,常常会导致数学考试发挥失常。这要从“数学考试内容”和“数学考试心理”两个角度学会数学考试的一些方法。许多同学在数学考试的过程中感觉试卷很容易,然而完成的正确率低、考试分数低,这是因为他们经常出现审题的错误。科学的审题方法是每个同学所必备的,要能读、思、写、画并举,能找准关键词,善于挖掘隐含条件,能排除干扰条件,能识别题目中的“陷阱”。此外,在考试前要有意识调适考试心理,使自己处于心平气和、情绪饱满的考试状态。拥有足够的自信,保持好适度的紧张,把握好考试的节奏,将较难的问题分步分解,保证会考的题目不丢分,你就一定会成功!