一、选择题(40分):
1、2008+2008-2008× ÷(-2008)=( )
A、2008; B、-2008; C、4016; D、6024;
2、如图所示的4个立体图形中,左视图是长方形的有( )个
A、0; B、1; C、2; D、3;
3、有以下两个结论:
① 任何一个有理数和它的相反数之间至少有一个有理数;
② 如果一个有理数有倒数,则这个有理数与它的倒数之间至少有一个有理数。
则( )
A、①,②都不对; B、①对,②不对; C、①,②都对; D、①不对,②对;
4、正方形内有一点A,到各边的距离从小到大依次是:1 ,2,5,6,则正方形的面积是( )
A、33; B、36; C、48; D、49;
5、Digits of the produet of 2517×233 is( )
A、32; B、34; C、36; D、38;
(英汉小词典:digits 位数,product 乘积)
6、如图是以AB为直径的半圆弧ADB和圆心角为450的扇形
ABC,则图中Ⅰ的面积和Ⅱ的面积的比值是( )
A、1.6; B、1.4; C、1.2; D、1;
7、正整数x,y满足(2x-5)(2y-5)=25,则x+y的值是( )
A、10; B、18; C、26; D、10或18;
8、如图,在四边形ABCD中,AB=3,BC=4,CD=9,AD=a,
则( )
A、a≥16; B、a<2; C、2<a<16; D、a=16;
9、初一(1)班7 学生60名,其中参加数学小组的有36人,参加英语小组的人数比参加数学小组的人数少5人,并且这两个小组都不参加的人数比两个小组都参加的人数的 多2人,则同时参加这两个小组的人数是( )
A、16; B、12; C、10; D、8;
10、△ABC的三个内角A、B、C的外角依次记为α、β、γ,若β=2B,α-γ=400,则三个内角A、B、C的度数依次为( )
A、600,600,600; B、300,600,900; C、400,600,800; D、500,600,700;
二、A组填空题(40分):
11、( )÷[( )÷4-0.75]÷0.03125= ;
12、预计21世纪初的某一年,以下六国的服务出口额比上一年的增长率如下表:
美国 德国 英国 中国 日本 意大利
-3.4% -0.9% -5.3% 2.8% -7.3% 7.3%
则以上六国服务出口额的增长率由高到低的顺序中,排在第三位的国家是 ;
13、已知(x+5)2+ =0, 则 y2- = ;
14、-2a+7和 互为相反数,则a= ;
15、“嫦蛾一号”第一次入轨运行的椭圆轨道如图所示,其中黑色圆圈表示地球,其半径R=6371km,A是近地点,距地球205km,B是远地点,距地球50930km(已知地心,近地点,远地点在一条直线上),则AB= km(用科学计数法表示);
16、Tn the figure 5,MON is a atyaight line,If the angles α、βandγ,satisfy β:α=2:1,andγ:β=3:1,then the angle β= ;(英汉小词典:atraight line 直线,angle 角,satisfy 满足)
17、小明学了有理数运算法则后,编了一个程序:输入任何一个有理数时,显示屏上的结果总等于输入的有理数的平方减去2得到的差。若他第一次输入 ,然后再将所得的结果输入,这时显示屏出现的结果是 ;
18、如果多项式2x2-x的值等于1,那么4x4-4x3+3x2-x-1的值等于 ;
19、如图,点M是△ABC两个内角平分线的交点,点N是△ABC两个外角平分线的交点,如果∠CMB:∠CNB=3:2,那么∠CAB=度 ;
20、两盒糖果共176块,从第二个盒子中取出16块放入第一个盒子中,这时第一个盒子中糖果的块数比第二个盒子中糖果的块数的m倍(m为大于1的整数)多31块,那么第一个盒子中原来至少有糖果 块;
三、B组填空题(40分):
21、一个四位数添上一个小数点后变成的数比原数小2059.2,则这个四位数是 ;它除以4,得到的余数是 ;
22、已知正整数a,b,c(其中a≠1)满足abc=ab+30,则a+b+c的最小值是 ;最大值是 ;
23、数轴上到原点的距离不到5并且表示整数的只有 个,它们对应的数的和是 ;
24、设a、b分别是等腰三角形的两条边的长,m是这个三角形的周长,当a、b、m满足方
程组 时 ,m的值是 或 ;
25、甲、乙、丙三人同时出发,其中丙骑车从B镇去A镇,而甲、乙都从A镇去B镇(甲开汽车以每小时24千米的速度缓慢行进,乙以每小时4千米的速度步行),当丙与甲相遇在途中的D镇时,又骑车返回B镇,甲则调头去接乙,那么,当甲接到乙时,丙已往回走DB这段路程的 ;甲接到乙后(乙乘上甲车)以每小时88千米的速度前往B镇,结果三人同时到达B镇,那么丙骑车的速度是每小时 千米。
参考答案
一、选择题(每小题4分)
题号 1 2 3 4 5 6 7 8 9 10
答案 D C A D B D D C B C
二、A组选择题(每小题4分)
11.2008; 12.德国; 13.-94; 14.1115; 15.6.3877×104;
16.40º; 17.-11516; 18.1; 19.36; 20.131.
三、B组填空题(每空4分,第21题第一空两答案各2分)
21.2288或2080;0; 22.10;53; 23.9;0; 24.163;5; 25.57;或8.
1.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.
答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9
2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?
答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。
先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。
再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。
再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。
所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320
一张方桌由一个桌面和四条腿组成,1立方米木料可制作桌面50张或桌腿300条,现在有5立方米木料,问用多少木料制作桌面,多少木料制桌腿,正好配成方桌多少张?
轮船在静水中的速度为1小时24千米,水流速度是2千米一小时,该船在甲乙两地间行驶一个来回就用了6小时,求从甲到乙顺流航行和从乙到甲逆流航行各用了多少时间,甲乙两地距离是多少?
甲仓存煤200吨,乙仓存煤70吨,若甲仓每天运出15吨,乙仓每天运进25吨,几天后乙仓存煤是甲仓的2倍?
甲车间有工人27人,乙车间有工人19人,现在新招20名工人,为使甲车间的人数是乙车间人数的2倍,应把新工人如何分配到两个车间中去?
1,设可以做x张方桌,则
需要做x张桌面,4x条桌腿
x*(1/50)+4x*(1/300)=5
解得 x=150
2,解:设甲乙两地的距离是x千米,
根据题意得: x/(24+2)+x/(24-2)=6
解得 x=71.5
则 ...........
3题
解设x天后已仓的媒是甲仓的2倍
则 2*(200-15x)=70+25x
解得 x=6
4题
解设向甲车间安排x人,则向乙车间安排20-x人
根据题意得 27+x=2*(19+20-x)
解得 x=17
1.一个两位数,十位数字是x,各位数字是x-1,把十位数字与各位数字对调后,所得到的两位数是什么?
2.小小的妈妈带m元钱上街买菜,她买肉用去了二分之一,买蔬菜用去了剩下的三分之一,那么她还剩多少元?
相关答案:
第一题:11X-10
第二题:M-m/2-m/2/3=1/3M 元
如下图,第100行的第5个数是几?
1
2 3
4 5 6
7 8 9 10
11 12 13 14 15
16 17........
答案是4955
由图的左边最外层1 2 4 7 11 16 得后面的数总是比前面的数大,
而且第2个比第1个大1....第3个比第4个大2....第4个比第3个大3..第5个比第第4个大4....第6个比第5个大5..........所以可以设左边最外层中第n个数为x 则x等于〔1加2加3加……加〈n—1〉〕.......所以第100行的第1个数为〔1加2加3加……加〈100—1〉〕等于4951
所以第100行第5个数为4955
一、计算1+3+5+7+…+1997+1999的值。
二、若2x+|4-5x|+|1-3x|+4的值恒为常数,求x该满足的条件及此常数的值。
三、已知
1 2 3
--- + --- + --- = 0 ①
x y z
1 6 5
--- - --- - --- =0 ②
x y z
x y z
试求 --- + --- + --- 的值
y z x
四、在1,2,3,…,1998中的每一个数的前面任意添上一个“+”或“-”那么最后计算出来的结果是奇数还是偶数?
五、某校初中一年级举行数学竞赛,参加的认识是未参加人数的3倍,如果该年级减少6人,未参加的学生增加6人,那么参加与未参加人数之比是
2:1 求参加竞赛的与未参加竞赛的认识以及初中一年级的人数
答案:一题:
原式=(1+1999)*[(1999-1)/2+1]/2
=2000*1000 /2
=1000000
二题:
2x+|4-5x|+|1-3x|+4的值恒为常数,则
4-5X≥0,1-3X≤0
所以:1/3≤X≤4/5
原式=2X+4-5X+3X-1+4=7
三题:
由②得:1/X=6/Y+5/Z代入 ①得
8/Y+8/Z=0
所以:Y=-Z代入1/X=6/Y+5/Z得:
1/X=1/Y
所以:X=Y
X/Y+Y/Z+Z/X=1-1-1=-1
四题:
在1,2,3,…,1998中,共有999个奇数,999个偶数,
无论二个偶数间的加减,其结果都是偶数,所以只考虑奇数间的关系.
因为任意二个奇数间的加减,其结果都是偶数,
所以,最后都是一个奇数和一个偶数间的加减,
所以,最后计算出来的结果是奇数.
五题:
设:未参加竞赛的人数为X,则参加竞赛的人数为3X,全校总人数为4X
如果该年级减少6人,则总人数为4X-6
未参加的学生增加6人,则未参加的人数为X+6,
参加的人数为4X-6-(X+6)=3X-12
参加与未参加人数之比是2:1
所以:3X-12=2*(X+6)
解之得:X=24(人),参加竞赛的人数为3X=72人,全校总人数为4X=96人
负二分之一 三分之一
负四分之一 五分之一 负六分之一
负七分之一 八分之一 负九分之一 十分之一。。。。。。
这组数中,第2007行第7个是什么数?
第1行有1个数,
第2行有2个数,
第3行有3个数,
....
所以第n行有n个数,
1到2006行,一起有数:
1+2+3+...+2006=2006*2007/2=2013021 个.
2013021+7=2013028
第2007行第7个的分数是1/2013028.
又发现,在每行第奇数个位置的都是负数.
所以第2007行第7个是: -1/2013028
1.已知关于x的方程2a(x-1)=(5-a)x+3b有无数多个解,那么a=_____,b=_____.
答:2a(x-1)=(5-a)x+3b
2ax-2a=5x-ax+3b
3ax-5x=2a+3b
x(3a-5)=2a+3b
关于x的方程2a(x-1)=(5-a)x+3b有无数多个解
所以无论X取何值,总成立
所以此方程与X无关
所以 3a-5=0 , 2a+3b=0
a=5/3 , b= -10/9
2.由自然数1~9组成的一切可能的没有重复数字的四位数,这些四位数之和是多少?
答:首先看看一共有多少个四位数。
千位有9种可能,百位有8种,十位有7种,个位有6种。
一共有3024个四位数。
先看个位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的个位是1,有336个数的个位是2,有336个数的个位是3,……有336个数的个位是9。
这些所有的个位相加就是336×(1+2+...+9)×1。
再看十位。由于每个数字的地位是平等的,所以
有九分之一,就是有336个数的十位是1,有336个数的十位是2,有336个数的十位是3,……有336个数的十位是9。
这些所有的个位相加就是336×(1+2+...+9)×10。
再看百位。由上面分析可知,所有的百位相加就是336×(1+2+...+9)×100。
再看千位。由上面分析可知,所有的千位相加就是336×(1+2+...+9)×1000。
所以所有的四位数之和,就是:
336×(1+2+...+9)×1+336×(1+2+...+9)×10+336×(1+2+...+9)×100+336×(1+2+...+9)×1000
=336×(1+2+...+9)×(1+10+100+1000)
=336×45×1111
=16798320
一、选择题(每题1分,共10分)
1.如果a,b都代表有理数,并且a+b=0,那么 ( )
A.a,b都是0. B.a,b之一是0.C.a,b互为相反数.D.a,b互为倒数.
2.下面的说法中正确的是 ( )
A.单项式与单项式的和是单项式.B.单项式与单项式的和是多项式.
C.多项式与多项式的和是多项式.D.整式与整式的和是整式.
3.下面说法中不正确的是 ( )
A. 有最小的自然数. B.没有最小的正有理数.
C.没有最大的负整数. D.没有最大的非负数.
4.如果a,b代表有理数,并且a+b的值大于a-b的值,那么 ( )
A.a,b同号. B.a,b异号.C.a>0. D.b>0.
5.大于-π并且不是自然数的整数有 ( )
A.2个. B.3个.C.4个. D.无数个.
6.有四种说法:
甲.正数的平方不一定大于它本身;乙.正数的立方不一定大于它本身;
丙.负数的平方不一定大于它本身;丁.负数的立方不一定大于它本身.
这四种说法中,不正确的说法的个数是 ( )
A.0个. B.1个.C.2个. D.3个.
7.a代表有理数,那么,a和-a的大小关系是 ( )
A.a大于-a.B.a小于-a.C.a大于-a或a小于-a.D.a不一定大于-a.
8.在解方程的过程中,为了使得到的方程和原方程同解,可以在原方程的两边( )
A.乘以同一个数.B.乘以同一个整式.C.加上同一个代数式.D.都加上1.
9.杯子中有大半杯水,第二天较第一天减少了10%,第三天又较第二天增加了10%,那么,第三天杯中的水量与第一天杯中的水量相比的结果是( )
A.一样多. B.多了.C.少了. D.多少都可能.
10.轮船往返于一条河的两码头之间,如果船本身在静水中的速度是固定的,那么,当这条河的水流速度增大时,船往返一次所用的时间将( )
A.增多. B.减少.C.不变. D.增多、减少都有可能.
二、填空题(每题1分,共10分)
1. ______.
2.198919902-198919892=______.
3. =________.
4. 关于x的方程 的解是_________.
5.1-2+3-4+5-6+7-8+…+4999-5000=______.
6.当x=- 时,代数式(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)的值是____.
7.当a=-0.2,b=0.04时,代数式 的值是______.
8.含盐30%的盐水有60千克,放在秤上蒸发,当盐水变为含盐40%时,秤得盐水的重是______克.
9.制造一批零件,按计划18天可以完成它的 .如果工作4天后,工作效率提高了 ,那么完成这批零件的一半,一共需要______天.
10.现在4点5分,再过______分钟,分针和时针第一次重合.
答案与提示
一、选择题
1.C 2.D 3.C 4.D 5.C 6.B 7.D 8.D 9.C 10.A
提示:
1.令a=2,b=-2,满足2+(-2)=0,由此
2.x2,2x2,x3都是单项式.两个单项式x3,x2之和为x3+x2是多项式,排除A.两个单项式x2,2x2之和为3x2是单项式,排除B.两个多项式x3+x2与x3-x2之和为2x3是个单项式,排除C,因此选D.
3.1是最小的自然数,A正确.可以找到正
所以C“没有最大的负整数”的说法不正确.写出扩大自然数列,0,1,2,3,…,n,…,易知无最大非负数,D正确.所以不正确的说法应选C.
5.在数轴上容易看出:在-π右边0的左边(包括0在内)的整数只有-3,-2,-1,0共4个.选C.
6.由12=1,13=1可知甲、乙两种说法是正确的.由(-1)3=-1,可知丁也是正确的说法.而负数的平方均为正数,即负数的平方一定大于它本身,所以“负数平方不一定大于它本身”的说法不正确.即丙不正确.在甲、乙、丙、丁四个说法中,只有丙1个说法不正确.所以选B.
7.令a=0,马上可以排除A、B、C,应选D.
8.对方程同解变形,要求方程两边同乘不等于0的数.所以排除A.
我们考察方程x-2=0,易知其根为x=2.若该方程两边同乘以一个整式x-1,得(x-1)(x-2)=0,其根为x=1及x=2,不与原方程同解,排除B.若在方程x-2=0两边加上同一个代数式 去了原方程x=2的根.所以应排除C.事实上方程两边同时加上一个常数,新方程与原方程同解,对D,这里所加常数为1,因此选D.
9.设杯中原有水量为a,依题意可得,
第二天杯中水量为a×(1-10%)=0.9a;
第三天杯中水量为(0.9a)×(1+10%)=0.9×1.1×a;
第三天杯中水量与第一天杯中水量之比为
所以第三天杯中水量比第一天杯中水量少了,选C.
10.设两码头之间距离为s,船在静水中速度为a,水速为v0,则往返一次所用时间为
设河水速度增大后为v,(v>v0)则往返一次所用时间为
由于v-v0>0,a+v0>a-v0,a+v>a-v
所以(a+v0)(a+v)>(a-v0)(a-v)
∴t0-t<0,即t0<t.因此河水速增大所用时间将增多,选A.
二、填空题
提示:
2.198919902-198919892
=(19891990+19891989)×(19891990-19891989)
=(19891990+19891989)×1=39783979.
3.由于(2+1)(22+1)(24+1)(28+1)(216+1)
=(2-1)(2+1)(22+1)(24+1)(28+1)(216+1)
=(22-1)(22+1)(24+1)(28+1)(216+1)
=(24-1)(24+1)(28+1)(216+1)
=(28-1)(28+1)(216+1)
=(216-1)(216+1)=232-1.
2(1+x)-(x-2)=8,2+2x-x+2=8解得;x=4
5.1-2+3-4+5-6+7-8+…+4999-5000
=(1-2)+(3-4)+(5-6)+(7-8)+…+(4999-5000)
=-2500.
6.(3x3-5x2+6x-1)-(x3-2x2+x-2)+(-2x3+3x2+1)=5x+2
7.注意到:
当a=-0.2,b=0.04时,a2-b=(-0.2)2-0.04=0,b+a+0.16=0.04-0.2+0.16=0.
8.食盐30%的盐水60千克中含盐60×30%(千克)设蒸发变成含盐为40%的水重x克,即0.001x千克,此时,60×30%=(0.001x)×40%
解得:x=45000(克).
1.设a,b,c为实数,且|a|+a=0,|ab|=ab,|c|-c=0,求代数式|b|-|a+b|-|c-b|+|a-c|的值. 3.若m<0,n>0,|m|<|n|,且|x+m|+|x-n|=m+n, 求x的取值范围. 4.设(3x-1)7=a7x7+a6x6+…+a1x+a0,试求a0+a2+a4+a6的值. 5.已知方程组 有解,求k的值. 6.解方程2|x+1|+|x-3|=6. 7.解方程组 8.解不等式||x+3|-|x-1||>2. 9.比较下面两个数的大小: 10.x,y,z均是非负实数,且满足: x+3y+2z=3,3x+3y+z=4, 求u=3x-2y+4z的最大值与最小值. 11.求x4-2x3+x2+2x-1除以x2+x+1的商式和余式. 12.如图1-88所示.小柱住在甲村,奶奶住在乙村,星期日小柱去看望奶奶,先在北山坡打一捆草,又在南山坡砍一捆柴给奶奶送去.请问:小柱应该选择怎样的路线才能使路程最短? 13.如图1-89所示.AOB是一条直线,OC,OE分别是∠AOD和∠DOB的平分线,∠COD=55°.求∠DOE的补角. 14.如图1-90所示.BE平分∠ABC,∠CBF=∠CFB=55°,∠EDF=70°.求证:BC‖AE. 15.如图1-91所示.在△ABC中,EF⊥AB,CD⊥AB,∠CDG=∠BEF.求证:∠AGD=∠ACB. 16.如图1-92所示.在△ABC中,∠B=∠C,BD⊥AC于D.求 17.如图1-93所示.在△ABC中,E为AC的中点,D在BC上,且BD∶DC=1∶2,AD与BE交于F.求△BDF与四边形FDCE的面积之比. 18.如图1-94所示.四边形ABCD两组对边延长相交于K及L,对角线AC‖KL,BD延长线交KL于F.求证:KF=FL. 19.任意改变某三位数数码顺序所得之数与原数之和能否为999?说明理由. 20.设有一张8行、8列的方格纸,随便把其中32个方格涂上黑色,剩下的32个方格涂上白色.下面对涂了色的方格纸施行“操作”,每次操作是把任意横行或者竖列上的各个方格同时改变颜色.问能否最终得到恰有一个黑色方格的方格纸? 21.如果正整数p和p+2都是大于3的素数,求证:6|(p+1). 22.设n是满足下列条件的最小正整数,它们是75的倍数,且恰有 23.房间里凳子和椅子若干个,每个凳子有3条腿,每把椅子有4条腿,当它们全被人坐上后,共有43条腿(包括每个人的两条腿),问房间里有几个人? 24.求不定方程49x-56y+14z=35的整数解. 25.男、女各8人跳集体舞. (1)如果男女分站两列; (2)如果男女分站两列,不考虑先后次序,只考虑男女如何结成舞伴. 问各有多少种不同情况? 26.由1,2,3,4,5这5个数字组成的没有重复数字的五位数中,有多少个大于34152? 27.甲火车长92米,乙火车长84米,若相向而行,相遇后经过1.5秒(s)两车错过,若同向而行相遇后经6秒两车错过,求甲乙两火车的速度. 28.甲乙两生产小队共同种菜,种了4天后,由甲队单独完成剩下的,又用2天完成.若甲单独完成比乙单独完成全部任务快3天.求甲乙单独完成各用多少天? 29.一船向相距240海里的某港出发,到达目的地前48海里处,速度每小时减少10海里,到达后所用的全部时间与原速度每小时减少4海里航行全程所用的时间相等,求原来的速度. 30.某工厂甲乙两个车间,去年计划完成税利750万元,结果甲车间超额15%完成计划,乙车间超额10%完成计划,两车间共同完成税利845万元,求去年这两个车间分别完成税利多少万元? 31.已知甲乙两种商品的原价之和为150元.因市场变化,甲商品降价10%,乙商品提价20%,调价后甲乙两种商品的单价之和比原单价之和降低了1%,求甲乙两种商品原单价各是多少? 32.小红去年暑假在商店买了2把儿童牙刷和3支牙膏,正好把带去的钱用完.已知每支牙膏比每把牙刷多1元,今年暑假她又带同样的钱去该商店买同样的牙刷和牙膏,因为今年的牙刷每把涨到1.68元,牙膏每支涨价30%,小红只好买2把牙刷和2支牙膏,结果找回4角钱.试问去年暑假每把牙刷多少钱?每支牙膏多少钱? 33.某商场如果将进货单价为8元的商品,按每件12元卖出,每天可售出400件,据经验,若每件少卖1元,则每天可多卖出200件,问每件应减价多少元才可获得最好的效益? 34.从A镇到B镇的距离是28千米,今有甲骑自行车用0.4千米/分钟的速度,从A镇出发驶向B镇,25分钟以后,乙骑自行车,用0.6千米/分钟的速度追甲,试问多少分钟后追上甲? 35.现有三种合金:第一种含铜60%,含锰40%;第二种含锰10%,含镍90%;第三种含铜20%,含锰50%,含镍30%.现各取适当重量的这三种合金,组成一块含镍45%的新合金,重量为1千克. (1)试用新合金中第一种合金的重量表示第二种合金的重量; (2)求新合金中含第二种合金的重量范围; (3)求新合金中含锰的重量范围.
1. 甲、乙、丙三人在A、B两块地植树,A地要植900棵,B地要植1250棵.已知甲、乙、丙每天分别能植树24,30,32棵,甲在A地植树,丙在B地植树,乙先在A地植树,然后转到B地植树.两块地同时开始同时结束,乙应在开始后第几天从A地转到B地?
2. 有三块草地,面积分别是5,15,24亩.草地上的草一样厚,而且长得一样快.第一块草地可供10头牛吃30天,第二块草地可供28头牛吃45天,问第三块地可供多少头牛吃80天?
3. 某工程,由甲、乙两队承包,2.4天可以完成,需支付1800元;由乙、丙两队承包,3+3/4天可以完成,需支付1500元;由甲、丙两队承包,2+6/7天可以完成,需支付1600元.在保证一星期内完成的前提下,选择哪个队单独承包费用最少?
4. 一个圆柱形容器内放有一个长方形铁块.现打开水龙头往容器中灌水.3分钟时水面恰好没过长方体的顶面.再过18分钟水已灌满容器.已知容器的高为50厘米,长方体的高为20厘米,求长方体的底面面积和容器底面面积之比.
5. 甲、乙两位老板分别以同样的价格购进一种时装,乙购进的套数比甲多1/5,然后甲、乙分别按获得80%和50%的利润定价出售.两人都全部售完后,甲仍比乙多获得一部分利润,这部分利润又恰好够他再购进这种时装10套,甲原来购进这种时装多少套?
6. 有甲、乙两根水管,分别同时给A,B两个大小相同的水池注水,在相同的时间里甲、乙两管注水量之比是7:5.经过2+1/3小时,A,B两池中注入的水之和恰好是一池.这时,甲管注水速度提高25%,乙管的注水速度不变,那么,当甲管注满A池时,乙管再经过多少小时注满B池?
1、 小明早上从家步行去学校,走完一半路程时,爸爸发现小明的数学书丢在家里,随即骑车去给小明送书,追上时,小明还有3/10的路程未走完,小明随即上了爸爸的车,由爸爸送往学校,这样小明比独自步行提早5分钟到校.小明从家到学校全部步行需要多少时间?
2、甲、乙两车都从A地出发经过B地驶往C地,A,B两地的距离等于B,C两地的距离。乙车的速度是甲车速度的80%.已知乙车比甲车早出发11分钟,但在B地停留了7分钟,甲车则不停地驶往C地.最后乙车比甲车迟4分钟到C地.那么乙车出发后几分钟时,甲车就超过乙车?
3、 甲、乙两辆清洁车执行东、西城间的公路清扫任务.甲车单独清扫需要10小时,乙车单独清扫需要15小时,两车同时从东、西城相向开出,相遇时甲车比乙车多清扫12千米,问东、西两城相距多少千米?
4、今有重量为3吨的集装箱4个,重量为2.5吨的集装箱5个,重量为1.5吨的集装箱14个,重量为1吨的集装箱7个.那么最少需要用多少辆载重量为4.5吨的汽车可以一次全部运走集装箱?
小学数学应用题综合训练(02)
5、 师徒二人共同加工170个零件,师傅加工零件个数的1/3比徒弟加工零件个数的1/4还多10个,那么徒弟一共加工了几个零件?
6、一辆大轿车与一辆小轿车都从甲地驶往乙地.大轿车的速度是小轿车速度的80%.已知大轿车比小轿车早出发17分钟,但在两地中点停了5分钟,才继续驶往乙地;而小轿车出发后中途没有停,直接驶往乙地,最后小轿车比大轿车早4分钟到达乙地.又知大轿车是上午10时从甲地出发的.那么小轿车是在上午什么时候追上大轿车的。
等差数列和=(首项+末项)x项数÷2
奇数可以表示为2k-1,k就是项数
2021=2k-1,k=1011
所以
1+3+5+7+9+……+2021
=(1+2021)x1011÷2
=1011x1011
=1022121
望采纳,谢谢