第一步是用密钥初始化des
初始化的过程主要是用传入的密钥生成16对长度为48的Kn 子密钥
生成48位子密钥Kn的函数主要是 __create_sub_keys , 主要设计两个换位表pc1和pc2
key = self.__permutate(des.__pc1, self.__String_to_BitList(self.getKey())) 开始先用换位表生成56位的初始key值(同pc1表的位数)
之后划分成两部分self.L和self.R各28位,然后是一个循环16此的左移操作,最后用pc2换位表生成第一个子密钥Kn[0]
我们传入数据调用encrypt函数即可, DES.encrypt('flag{isisisikey}') 我们先来看encrypt函数
encrypt函数主要调用了crypt函数,继续跟进crypt函数,开始一部分是cbc模式获取iv的过程,这里先暂时不考虑cbc,直接看关键部分
这里就设计到分组加密的核心了,为什么DES又叫分组加密,有一操作是 block = self.__String_to_BitList(data[i:i+8]) 把加密数据每八个字节分成一个block,然后调用 __String_to_BitList 会将八字节字符转换为64bit的二进制,每个block再调用 __des_crypt 函数加密
开始几步和子密钥生成函数类似,用一个ip换位表初始化block,然后划分成self,L和self.R 各32位。
之后又是一个16轮的计算,我们分析一下每轮操作
self.R = self.__permutate(des.__expansion_table, self.R) 利用一个扩展表将32bit扩展成48位,扩展表:
B = [self.R[:6], self.R[6:12], self.R[12:18], self.R[18:24], self.R[24:30], self.R[30:36], self.R[36:42], self.R[42:]] 将48位的self.R 分成6*8为,之后一个循环就是经典的是s-box的置换操作
s-box盒一个八个,m是前后2bit,n是中间6bit, v是s-box的(n,m)处的值
self.R = self.__permutate(des.__p, Bn) 是P-box置换盒。 最后返回64bit的processed_block, 经过BitList_to_String函数处理就变成8字节的字符流了,最后把每个block分组join一块就是最后的密文。
我们再来总结一下这个过程
子密钥生成算法
des 加密算法
附上完整版des加解密算法脚本
DES (Data Encryption Standard)是分组对称密码算法。
DES算法利用 多次组合替代算法 和 换位算法 ,分散和错乱的相互作用,把明文编制成密码强度很高的密文,它的加密和解密用的是同一算法。
DES算法,是一种 乘积密码 ,其在算法结构上主要采用了 置换 、 代替 、 模二相加 等函数,通过 轮函数 迭代的方式来进行计算和工作。
DES算法也会使用到数据置换技术,主要有初始置换 IP 和逆初始置换 IP^-1 两种类型。DES算法使用置换运算的目的是将原始明文的所有格式及所有数据全部打乱重排。而在轮加密函数中,即将数据全部打乱重排,同时在数据格式方面,将原有的32位数据格式,扩展成为48位数据格式,目的是为了满足S盒组对数据长度和数据格式规范的要求。
一组数据信息经过一系列的非线性变换以后,很难从中推导出其计算的过程和使用的非线性组合;但是如果这组数据信息使用的是线性变换,计算就容易的多。在DES算法中,属于非线性变换的计算过程只有S盒,其余的数据计算和变换都是属于线性变换,所以DES算法安全的关键在于S盒的安全强度。此外,S盒和置换IP相互配合,形成了很强的抗差分攻击和抗线性攻击能力,其中抗差分攻击能力更强一些。
DES算法是一种分组加密机制,将明文分成N个组,然后对各个组进行加密,形成各自的密文,最后把所有的分组密文进行合并,形成最终的密文。
DES加密是对每个分组进行加密,所以输入的参数为分组明文和密钥,明文分组需要置换和迭代,密钥也需要置换和循环移位。在初始置换IP中,根据一张8*8的置换表,将64位的明文打乱、打杂,从而提高加密的强度;再经过16次的迭代运算,在这些迭代运算中,要运用到子密钥;每组形成的初始密文,再次经过初始逆置换 IP^-1 ,它是初始置换的逆运算,最后得到分组的最终密文。
图2右半部分,给出了作用56比特密钥的过程。DES算法的加密密钥是64比特,但是由于密钥的第n*8(n=1,2…8)是校验(保证含有奇数个1),因此实际参与加密的的密钥只有 56比特 。开始时,密钥经过一个置换,然后经过循环左移和另一个置换分别得到子密钥ki,供每一轮的迭代加密使用。每轮的置换函数都一样,但是由于密钥位的重复迭代使得子密钥互不相同。
DES算法 利用多次组合替代算法和换位算法,分散和错乱的相互作用,把明文编制成密码强度很高的密文,它的加密和解密用的是同一算法。
DES算法详述:DES对64位明文分组(密钥56bit)进行操作。
1、 初始置换函数IP:64位明文分组x经过一个初始置换函数IP,产生64位的输出x0,再将分组x0分成左半部分L0和右半部分R0:即将输入的第58位换到第一位,第50位换到第2位,…,依次类推,最后一位是原来的第7位。L0、R0则是换位输出后的两部分,L0是输出的左32位,R0是右32位。例,设置换前的输入值为D1D2D3…D64,则经过初始置换后的结果为:L0=D58D50…D8;R0=D57D49…D7.其置换规则如表1所示。
DES加密过程最后的逆置换 IP^-1 ,是表1的 逆过程 。就是把原来的每一位都恢复过去,即把第1位的数据,放回到第58位,把第2位的数据,放回到第50位。
2、 获取子密钥 Ki :DES加密算法的密钥长度为56位,一般表示为64位(每个第8位用于奇偶校验),将用户提供的64位初始密钥经过一系列的处理得到K1,K2,…,K16,分别作为 1~16 轮运算的 16个子密钥 。
(1). 将64位密钥去掉8个校验位,用密钥置换 PC-1 (表2)置换剩下的56位密钥;
(2). 将56位分成前28位C0和后28位D0,即 PC-1(K56)=C0D0 ;
(3). 根据轮数,这两部分分别循环左移1位或2位,表3:
(4). 移动后,将两部分合并成56位后通过压缩置换PC-2(表4)后得到48位子密钥,即Ki=PC-2(CiDi).
子密钥产生如图2所示:
3、 密码函数F(非线性的)
(1). 函数F的操作步骤:密码函数F 的输入是32比特数据和48比特的子密钥:
A.扩展置换(E):将数据的右半部分Ri从32位扩展为48位。位选择函数(也称E盒),如表5所示:
B.异或:扩展后的48位输出E(Ri)与压缩后的48位密钥Ki作异或运算;
C.S盒替代:将异或得到的48位结果分成八个6位的块,每一块通过对应的一个S盒产生一个4位的输出。
(2)、D、P盒置换:将八个S盒的输出连在一起生成一个32位的输出,输出结果再通过置换P产生一个32位的输出即:F(Ri,Ki),F(Ri,Ki)算法描述如图3,最后,将P盒置换的结果与最初的64位分组的左半部分异或,然后,左、右半部分交换,开始下一轮计算。
4、密文输出:经过16次迭代运算后,得到L16、R16,将此作为输入,进行逆置换,即得到密文输出。逆置换正好是初始置的逆运算。例如,第1位经过初始置换后,处于第40位,而通过逆置换,又将第40位换回到第1位,其逆置换规则如表8所示:
图4为DES算法加密原理图:
DES算法加密和解密过程采用相同的算法,并采用相同的加密密钥和解密密钥,两者的区别是:(1)、DES加密是从L0、R0到L15、R15进行变换,而解密时是从L15、R15到L0、R0进行变换的;(2)、加密时各轮的加密密钥为K0K1…K15,而解密时各轮的解密密钥为K15K14…K0;(3)、加密时密钥循环左移,解密时密钥循环右移。
DES加密过程分析:
(1)、首先要生成64位密钥,这64位的密钥经过“子密钥算法”换转后,将得到总共16个子密钥。将这些子密钥标识为Kn(n=1,2,…,16)。这些子密钥主要用于总共十六次的加密迭代过程中的加密工具。
(2)、其次要将明文信息按64位数据格式为一组,对所有明文信息进行分组处理。每一段的64位明文都要经过初试置换IP,置换的目的是将数据信息全部打乱重排。然后将打乱的数据分为左右两块,左边一块共32位为一组,标识为L0;右边一块也是32位为一组,标识为R0.
(3)、置换后的数据块总共要进行总共十六次的加密迭代过程。加密迭代主要由加密函数f来实现。首先使用子密钥K1对右边32位的R0进行加密处理,得到的结果也是32位的;然后再将这个32位的结果数据与左边32位的L0进行模2处理,从而再次得到一个32位的数据组。我们将最终得到的这个32位组数据,作为第二次加密迭代的L1,往后的每一次迭代过程都与上述过程相同。
(4)、在结束了最后一轮加密迭代之后,会产生一个64位的数据信息组,然后我们将这个64位数据信息组按原有的数据排列顺序平均分为左右两等分,然后将左右两等分的部分进行位置调换,即原来左等分的数据整体位移至右侧,而原来右等分的数据则整体位移至左侧,这样经过合并后的数据将再次经过逆初始置换IP^-1的计算,我们最终将得到一组64位的密文。
DES解密过程分析:DES的解密过程与它的加密过程是一样的,这是由于DES算法本身属于对称密码体制算法,其加密和解密的过程可以共用同一个过程和运算。
DES加密函数f:在DES算法中,要将64位的明文顺利加密输出成64位的密文,而完成这项任务的核心部分就是加密函数f。加密函数f的主要作用是在第m次的加密迭代中使用子密钥Km对Km-1进行加密操作。加密函数f在加密过程中总共需要运行16轮。
十六轮迭代算法:它先将经过置换后的明文分成两组,每组32位;同时密钥也被分成了两组,每组28位,两组密钥经过运算,再联合成一个48位的密钥,参与到明文加密的运算当中。S盒子,它由8个4*16的矩阵构成,每一行放着0到15的数据,顺序各个不同,是由IBM公司设计好的。经过异或运算的明文,是一个48位的数据,在送入到S盒子的时候,被分成了8份,每份6位,每一份经过一个S盒子,经过运算后输出为4位,即是一个0到15的数字的二进制表示形式。具体运算过程为,将输入的6位中的第1位为第6位合并成一个二进制数,表示行号,其余4位也合并成一个二进制数,表示列号。在当前S盒子中,以这个行号和列号为准,取出相应的数,并以二进制的形式表示,输出,即得到4位的输出,8个S盒子共计32位。
DES算法优缺点:
(1)、产生密钥简单,但密钥必须高度保密,因而难以做到一次一密;
(2)、DES的安全性依赖于密钥的保密。攻击破解DES算法的一个主要方法是通过密钥搜索,使用运算速度非常高的计算机通过排列组合枚举的方式不断尝试各种可能的密钥,直到破解为止。一般,DES算法使用56位长的密钥,通过简单计算可知所有可能的密钥数量最多是2^56个。随着巨型计算机运算速度的不断提高,DES算法的安全性也将随之下降,然而在一般的民用商业场合,DES的安全性仍是足够可信赖的。
(3)、DES算法加密解密速度比较快,密钥比较短,加密效率很高但通信双方都要保持密钥的秘密性,为了安全还需要经常更换DES密钥。
参考链接 :
一.加密
DES算法处理的数据对象是一组64比特的明文串。设该明文串为m=m1m2…m64 (mi=0或1)。明文串经过64比特的密钥K来加密,最后生成长度为64比特的密文E。其加密过程图示如下:
DES算法加密过程
对DES算法加密过程图示的说明如下:待加密的64比特明文串m,经过IP置换后,得到的比特串的下标列表如下:
IP 58 50 42 34 26 18 10 2
60 52 44 36 28 20 12 4
62 54 46 38 30 22 14 6
64 56 48 40 32 24 16 8
57 49 41 33 25 17 9 1
59 51 43 35 27 19 11 3
61 53 45 37 29 21 13 5
63 55 47 39 31 23 15 7
该比特串被分为32位的L0和32位的R0两部分。R0子密钥K1(子密钥的生成将在后面讲)经过变换f(R0,K1)(f变换将在下面讲)输出32位的比特串f1,f1与L0做不进位的二进制加法运算。运算规则为:
f1与L0做不进位的二进制加法运算后的结果赋给R1,R0则原封不动的赋给L1。L1与R0又做与以上完全相同的运算,生成L2,R2…… 一共经过16次运算。最后生成R16和L16。其中R16为L15与f(R15,K16)做不进位二进制加法运算的结果,L16是R15的直接赋值。
R16与L16合并成64位的比特串。值得注意的是R16一定要排在L16前面。R16与L16合并后成的比特串,经过置换IP-1后所得比特串的下标列表如下:
IP-1 40 8 48 16 56 24 64 32
39 7 47 15 55 23 63 31
38 6 46 14 54 22 62 30
37 5 45 13 53 21 61 29
36 4 44 12 52 20 60 28
35 3 43 11 51 19 59 27
34 2 42 10 50 18 58 26
33 1 41 9 49 17 57 25
经过置换IP-1后生成的比特串就是密文e.。
下面再讲一下变换f(Ri-1,Ki)。
它的功能是将32比特的输入再转化为32比特的输出。其过程如图所示:
对f变换说明如下:输入Ri-1(32比特)经过变换E后,膨胀为48比特。膨胀后的比特串的下标列表如下:
E: 32 1 2 3 4 5
4 5 6 7 8 9
8 9 10 11 12 13
12 13 14 15 16 17
16 17 18 19 20 21
20 21 22 23 24 25
24 25 26 27 28 29
28 29 30 31 32 31
膨胀后的比特串分为8组,每组6比特。各组经过各自的S盒后,又变为4比特(具体过程见后),合并后又成为32比特。该32比特经过P变换后,其下标列表如下:
P: 16 7 20 21
29 12 28 17
1 15 23 26
5 18 31 10
2 8 24 14
32 27 3 9
19 13 30 6
22 11 4 25
经过P变换后输出的比特串才是32比特的f (Ri-1,Ki)。
下面再讲一下S盒的变换过程。任取一S盒。见图:
在其输入b1,b2,b3,b4,b5,b6中,计算出x=b1*2+b6, y=b5+b4*2+b3*4+b2*8,再从Si表中查出x 行,y 列的值Sxy。将Sxy化为二进制,即得Si盒的输出。(S表如图所示)
至此,DES算法加密原理讲完了。在VC++6.0下的程序源代码为:
for(i=1;i=64;i++)
m1[i]=m[ip[i-1]];//64位明文串输入,经过IP置换。
下面进行迭代。由于各次迭代的方法相同只是输入输出不同,因此只给出其中一次。以第八次为例://进行第八次迭代。首先进行S盒的运算,输入32位比特串。
for(i=1;i=48;i++)//经过E变换扩充,由32位变为48位
RE1[i]=R7[E[i-1]];
for(i=1;i=48;i++)//与K8按位作不进位加法运算
RE1[i]=RE1[i]+K8[i];
for(i=1;i=48;i++)
{
if(RE1[i]==2)
RE1[i]=0;
}
for(i=1;i7;i++)//48位分成8组
{
s11[i]=RE1[i];
s21[i]=RE1[i+6];
s31[i]=RE1[i+12];
s41[i]=RE1[i+18];
s51[i]=RE1[i+24];
s61[i]=RE1[i+30];
s71[i]=RE1[i+36];
s81[i]=RE1[i+42];
}//下面经过S盒,得到8个数。S1,s2,s3,s4,s5,s6,s7,s8分别为S表
s[1]=s1[s11[6]+s11[1]*2][s11[5]+s11[4]*2+s11[3]*4+s11[2]*8];
s[2]=s2[s21[6]+s21[1]*2][s21[5]+s21[4]*2+s21[3]*4+s21[2]*8];
s[3]=s3[s31[6]+s31[1]*2][s31[5]+s31[4]*2+s31[3]*4+s31[2]*8];
s[4]=s4[s41[6]+s41[1]*2][s41[5]+s41[4]*2+s41[3]*4+s41[2]*8];
s[5]=s5[s51[6]+s51[1]*2][s51[5]+s51[4]*2+s51[3]*4+s51[2]*8];
s[6]=s6[s61[6]+s61[1]*2][s61[5]+s61[4]*2+s61[3]*4+s61[2]*8];
s[7]=s7[s71[6]+s71[1]*2][s71[5]+s71[4]*2+s71[3]*4+s71[2]*8];
s[8]=s8[s81[6]+s81[1]*2][s81[5]+s81[4]*2+s81[3]*4+s81[2]*8];
for(i=0;i8;i++)//8个数变换输出二进制
{
for(j=1;j5;j++)
{
temp[j]=s[i+1]%2;
s[i+1]=s[i+1]/2;
}
for(j=1;j5;j++)
f[4*i+j]=temp[5-j];
}
for(i=1;i33;i++)//经过P变换
frk[i]=f[P[i-1]];//S盒运算完成
for(i=1;i33;i++)//左右交换
L8[i]=R7[i];
for(i=1;i33;i++)//R8为L7与f(R,K)进行不进位二进制加法运算结果
{
R8[i]=L7[i]+frk[i];
if(R8[i]==2)
R8[i]=0;
}
[ 原创文档 本文适合中级读者 已阅读21783次 ] 文档 代码 工具
DES算法及其在VC++6.0下的实现(下)
作者:航天医学工程研究所四室 朱彦军
在《DES算法及其在VC++6.0下的实现(上)》中主要介绍了DES算法的基本原理,下面让我们继续:
二.子密钥的生成
64比特的密钥生成16个48比特的子密钥。其生成过程见图:
子密钥生成过程具体解释如下:
64比特的密钥K,经过PC-1后,生成56比特的串。其下标如表所示:
PC-1 57 49 41 33 25 17 9
1 58 50 42 34 26 18
10 2 59 51 43 35 27
19 11 3 60 52 44 36
63 55 47 39 31 23 15
7 62 54 46 38 30 22
14 6 61 53 45 37 29
21 13 5 28 20 12 4
该比特串分为长度相等的比特串C0和D0。然后C0和D0分别循环左移1位,得到C1和D1。C1和D1合并起来生成C1D1。C1D1经过PC-2变换后即生成48比特的K1。K1的下标列表为:
PC-2 14 17 11 24 1 5
3 28 15 6 21 10
23 19 12 4 26 8
16 7 27 20 13 2
41 52 31 37 47 55
30 40 51 45 33 48
44 49 39 56 34 53
46 42 50 36 29 32
C1、D1分别循环左移LS2位,再合并,经过PC-2,生成子密钥K2……依次类推直至生成子密钥K16。
注意:Lsi (I =1,2,….16)的数值是不同的。具体见下表:
迭代顺序 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
左移位数 1 1 2 2 2 2 2 2 1 2 2 2 2 2 2 1
生成子密钥的VC程序源代码如下:
for(i=1;i57;i++)//输入64位K,经过PC-1变为56位 k0[i]=k[PC_1[i-1]];
56位的K0,均分为28位的C0,D0。C0,D0生成K1和C1,D1。以下几次迭代方法相同,仅以生成K8为例。 for(i=1;i27;i++)//循环左移两位
{
C8[i]=C7[i+2];
D8[i]=D7[i+2];
}
C8[27]=C7[1];
D8[27]=D7[1];
C8[28]=C7[2];
D8[28]=D7[2];
for(i=1;i=28;i++)
{
C[i]=C8[i];
C[i+28]=D8[i];
}
for(i=1;i=48;i++)
K8[i]=C[PC_2[i-1]];//生成子密钥k8
注意:生成的子密钥不同,所需循环左移的位数也不同。源程序中以生成子密钥 K8为例,所以循环左移了两位。但在编程中,生成不同的子密钥应以Lsi表为准。
三.解密
DES的解密过程和DES的加密过程完全类似,只不过将16圈的子密钥序列K1,K2……K16的顺序倒过来。即第一圈用第16个子密钥K16,第二圈用K15,其余类推。
第一圈:
加密后的结果
L=R15, R=L15⊕f(R15,K16)⊕f(R15,K16)=L15
同理R15=L14⊕f(R14,K15), L15=R14。
同理类推:
得 L=R0, R=L0。
其程序源代码与加密相同。在此就不重写。
四.示例
例如:已知明文m=learning, 密钥 k=computer。
明文m的ASCII二进制表示:
m= 01101100 01100101 01100001 01110010
01101110 01101001 01101110 01100111
密钥k的ASCII二进制表示:
k=01100011 01101111 01101101 01110000
01110101 01110100 01100101 01110010
明文m经过IP置换后,得:
11111111 00001000 11010011 10100110 00000000 11111111 01110001 11011000
等分为左右两段:
L0=11111111 00001000 11010011 10100110 R0=00000000 11111111 01110001 11011000
经过16次迭代后,所得结果为:
L1=00000000 11111111 01110001 11011000 R1=00110101 00110001 00111011 10100101
L2=00110101 00110001 00111011 10100101 R2=00010111 11100010 10111010 10000111
L3=00010111 11100010 10111010 10000111 R3=00111110 10110001 00001011 10000100
L4=00111110101100010000101110000100 R4=11110111110101111111101000111110
L5=11110111110101111111101000111110 R5=10010110011001110100111111100101
L6=10010110011001110100111111100101 R6=11001011001010000101110110100111
L7=11001011001010000101110110100111 R7=01100011110011101000111011011001
L8=01100011110011101000111011011001 R8=01001011110100001111001000000100
L9=01001011110100001111001000000100 R9=00011101001101111010111011100001
L10=00011101001101111010111011100001 R10=11101110111110111111010100000101
L11=11101110111110111111010100000101 R11=01101101111011011110010111111000
L12=01101101111011011110010111111000 R12=11111101110011100111000110110111
L13=11111101110011100111000110110111 R13=11100111111001011010101000000100
L14=11100111111001011010101000000100 R14=00011110010010011011100001100001
L15=00011110010010011011100001100001 R15=01010000111001001101110110100011
L16=01010000111001001101110110100011 R16=01111101101010000100110001100001
其中,f函数的结果为:
f1=11001010001110011110100000000011 f2=00010111000111011100101101011111
f3=00001011100000000011000000100001 f4=11100000001101010100000010111001
f5=10101000110101100100010001100001 f6=00111100111111111010011110011001
f7=11110101101010011100000100111100 f8=10000000111110001010111110100011
f9=01111110111110010010000000111000 f10=10100101001010110000011100000001
f11=01110000110110100100101100011001 f12=00010011001101011000010010110010
f13=10001010000010000100111111111100 f14=11100011100001111100100111010110
f15=10110111000000010111011110100111 f16=01100011111000011111010000000000
16个子密钥为:
K1=11110000101111101110111011010000 K2=11100000101111101111011010010101
K3=11110100111111100111011000101000 K4=11100110111101110111001000011010
K5=11101110110101110111011100100110 K6=11101111110100110101101110001011
K7=00101111110100111111101111100110 K8=10111111010110011101101101010000
K9=00011111010110111101101101000100 K10=00111111011110011101110100001001
K11=00011111011011011100110101101000 K12=01011011011011011011110100001010
K13=11011101101011011010110110001111 K14=11010011101011101010111110000000
K15=11111001101111101010011011010011 K16=11110001101111100010111000000001
S盒中,16次运算时,每次的8 个结果为:
第一次:5,11,4,1,0,3,13,9;
第二次:7,13,15,8,12,12,13,1;
第三次:8,0,0,4,8,1,9,12;
第四次:0,7,4,1,7,6,12,4;
第五次:8,1,0,11,5,0,14,14;
第六次:14,12,13,2,7,15,14,10;
第七次:12,15,15,1,9,14,0,4;
第八次:15,8,8,3,2,3,14,5;
第九次:8,14,5,2,1,15,5,12;
第十次:2,8,13,1,9,2,10,2;
第十一次:10,15,8,2,1,12,12,3;
第十二次:5,4,4,0,14,10,7,4;
第十三次:2,13,10,9,2,4,3,13;
第十四次:13,7,14,9,15,0,1,3;
第十五次:3,1,15,5,11,9,11,4;
第十六次:12,3,4,6,9,3,3,0;
子密钥生成过程中,生成的数值为:
C0=0000000011111111111111111011 D0=1000001101110110000001101000
C1=0000000111111111111111110110 D1=0000011011101100000011010001
C2=0000001111111111111111101100 D2=0000110111011000000110100010
C3=0000111111111111111110110000 D3=0011011101100000011010001000
C4=0011111111111111111011000000 D4=1101110110000001101000100000
C5=1111111111111111101100000000 D5=0111011000000110100010000011
C6=1111111111111110110000000011 D6=1101100000011010001000001101
C7=1111111111111011000000001111 D7=0110000001101000100000110111
C8=1111111111101100000000111111 D8=1000000110100010000011011101
C9=1111111111011000000001111111 D9=0000001101000100000110111011
C10=1111111101100000000111111111 D10=0000110100010000011011101100
C11=1111110110000000011111111111 D11=0011010001000001101110110000
C12=1111011000000001111111111111 D12=1101000100000110111011000000
C13=1101100000000111111111111111 D13=0100010000011011101100000011
C14=0110000000011111111111111111 D14=0001000001101110110000001101
C15=1000000001111111111111111101 D15=0100000110111011000000110100
C16=0000000011111111111111111011 D16=1000001101110110000001101000
des加密算法如下:
一、DES加密算法简介
DES(Data Encryption Standard)是目前最为流行的加密算法之一。DES是对称的,也就是说它使用同一个密钥来加密和解密数据。
DES还是一种分组加密算法,该算法每次处理固定长度的数据段,称之为分组。DES分组的大小是64位,如果加密的数据长度不是64位的倍数,可以按照某种具体的规则来填充位。
从本质上来说,DES的安全性依赖于虚假表象,从密码学的术语来讲就是依赖于“混乱和扩散”的原则。混乱的目的是为隐藏任何明文同密文、或者密钥之间的关系,而扩散的目的是使明文中的有效位和密钥一起组成尽可能多的密文。两者结合到一起就使得安全性变得相对较高。
DES算法具体通过对明文进行一系列的排列和替换操作来将其加密。过程的关键就是从给定的初始密钥中得到16个子密钥的函数。要加密一组明文,每个子密钥按照顺序(1-16)以一系列的位操作施加于数据上,每个子密钥一次,一共重复16次。每一次迭代称之为一轮。要对密文进行解密可以采用同样的步骤,只是子密钥是按照逆向的顺序(16-1)对密文进行处理。
二、DES加密算法加密原理
DES是采用分组加密。使用64位的分组长度和56位的密钥长度,将64位的输入经过一系列变换得到64位的输出。DES算法利用多次组合替代算法和换位算法,通过混淆和扩散的相互作用,把明文编辑成密码强度很高的密文。解密则使用了相同的步骤和相同的密钥。
64位数据为一组进行加密;
初始置换根据一张8*8的置换表,将64位的明文打乱
与56位的密钥经16轮次迭代运算形成的初始密文
最后经过初始逆置换得到分组的最终密文
DES算法与差分攻击
了解DES算法基本工作原理,体会并理解分组密码算法的混淆和扩散概念。了解Sbox工作原理及效果。了解DES的工作模式和填充方式。了解差分攻击
的基本原理。
IP置换目的是将输入的64位数据块按位重新组合,并把输出分为L0、R0两部分,每部分各长32位。
表中的数字代表新数据中此位置的数据在原数据中的位置,即原数据块的第58位放到新数据的第1位,第50位放到第2位,……依此类推,第7位放到第64位。置换后的数据分为L0和R0两部分,L0为新数据的左32位,R0为新数据的右32位。
不考虑每个字节的第8位,DES的密钥由64位减至56位,每个字节的第8位作为奇偶校验位。产生的56位密钥由下表生成(注意表中没有8,16,24,32,40,48,56和64这8位):
在DES的每一轮中,从56位密钥产生出不同的48位子密钥,确定这些子密钥的方式如下:
1).将56位的密钥分成两部分,每部分28位。
2).根据轮数,这两部分分别循环左移1位或2位。每轮移动的位数如下表:
移动后,从56位中选出48位。这个过程中,既置换了每位的顺序,又选择了子密钥,因此称为压缩置换。压缩置换规则如下表(注意表中没有9,18,22,25,35,38,43和54这8位):
压缩后的密钥与扩展分组异或以后得到48位的数据,将这个数据送人S盒,进行替代运算。替代由8个不同的S盒完成,每个S盒有6位输入4位输出。48位输入分为8个6位的分组,一个分组对应一个S盒,对应的S盒对各组进行代替操作。
一个S盒就是一个4行16列的表,盒中的每一项都是一个4位的数。S盒的6个输入确定了其对应的输出在哪一行哪一列,输入的高低两位做为行数H,中间四位做为列数L,在S-BOX中查找第H行L列对应的数据(32)。
S盒代替时DES算法的关键步骤,所有的其他的运算都是线性的,易于分析,而S盒是非线性的,相比于其他步骤,提供了更好安全性
S盒代替运算的32位输出按照P盒进行置换。该置换把输入的每位映射到输出位,任何一位不能被映射两次,也不能被略去,映射规则如下表:
表中的数字代表原数据中此位置的数据在新数据中的位置,即原数据块的第16位放到新数据的第1位,第7位放到第2位,……依此类推,第25位放到第32位。
末置换是初始置换的逆过程,DES最后一轮后,左、右两半部分并未进行交换,而是两部分合并形成一个分组做为末置换的输入。末置换规则如下表:
置换方法同上
实际应用中,DES是根据其加密算法所定义的明文分组的大小(64bits),将数据割成若干64bits的加密区块,再以加密区块为单位,分别进行加密处理。根据数据加密时每个加密区块间的关联方式,可以分为4种加密模式,包括ECB,CBC,CFB及OFB。
DES算法其中主要起作用的算法有:矩阵置换、扩展、左移、异或、左右互换、s盒作用 。其中对攻击者来说最麻烦的要说s盒一步,破解des体系关键在s盒。
乍一看六位输入与四位输出貌似没什么关系。但事实上,对于同一个s盒具有相同输入异或的所有输入六比特组的输出四比特异或值有一定规律。
具体些说,对于输入异或相同的明文对B,B*仅有32组,而这32组输出异或却并不是均匀分布,而是仅分布在很少的几个四比特值中;也可以说具有相同输入异或且输出四比特异或也相同的六比特输入数量不多且分布不均匀。正是这种输入输出输出异或间的不均匀性可以被攻击者利用并破解密钥。
结果表格: