格雷码转换二进制公式(二进制码转换为格雷码的公式)

2023-02-13 7:15:44 密码用途 思思

n为自然二进制码转换成n位格雷码如何设计电路

你好,n为自然二进制码转换成n位格雷码如何设计电路?格雷码是一种二进制循环码。格雷码的特点是从一个数变为相邻的一个数时,只有一个数据位发生跳变,由于这种特点,就可以避免二进制编码计数组合电路中出现的亚稳态。格雷码常用于通信、异步FIFO或者RAM地址寻址计数器中。

格雷码转换为二进制码原理如下:

n位的二进制:Bn,Bn-1,Bn-2。。。B2,B1,B0;n位的格雷码:Gn,Gn-1,Gn-2。。。G2,G1,G0;转换公式:Bn=Gn; Bi-1=Bi^Gi-1;(i=0,1,2,n-1;)

请参考!

格雷码转换二进制公式(二进制码转换为格雷码的公式) 第1张

c语言实现格雷码转换为二进制

把十进制小数乘以2,取其积的整数部分作对应二进制小数的最高位系数k -1 再取积的纯小数部分乘以2,新得积的整数部分又作下一位的系数k -2 ,再取其积的纯小数部分继续乘2,…,直到乘积小数部分为0时停止,这时乘积的整数部分是二进制数最低位系数,每次乘积得到的整数序列就是所求的二进制小数。这种方法每次乘以基数取其整数作系数。所以叫乘基取整法。需要指出的是并不是所有十进制小数都能转换成有限位的二进制小数并出现乘积的小数部分0的情况,有时整个换算过程无限进行下去。此时可以根据要求并考虑计算机字长,取定长度的位数后四舍五入这时得到的二进制数是原十进制数的近似值。

格雷码如何转换成二进制?

最左边一位依然不变依次异或,直到最低位。依次异或转换后的值就是格雷码转换 后的二进制值。

 在一组数的编码中,若任意两个相邻的代码只有一位二进制数不同,则称这种编码为格雷码(Gray Code),另外由于最大数与最小数之间也仅一位数不同,即“首尾相连”,因此又称循环码或反射码。

典型的二进制格雷码(Binary Gray Code)简称格雷码,因1953年公开的弗兰克·格雷(Frank Gray,18870913-19690523)专利“Pulse Code Communication”而得名,当初是为了通信,现在则常用于模拟-数字转换和位置-数字转换中。

法国电讯工程师波特(Jean-Maurice-Émile Baudot,18450911-19030328)在1880年曾用过的波特码相当于它的一种变形。1941年George Stibitz设计的一种8元二进制机械计数器正好符合格雷码计数器的计数规律。

二进制(binary),发现者莱布尼茨,是在数学和数字电路中以2为基数的记数系统,是以2为基数代表系统的二进位制。这一系统中,通常用两个不同的符号0(代表零)和1(代表一)来表示。

数字电子电路中,逻辑门的实现直接应用了二进制,现代的计算机和依赖计算机的设备里都使用二进制。每个数字称为一个比特(Bit,Binary digit的缩写)。

格雷码的转换方法

这种方法基于格雷码是反射码的事实,利用递归的如下规则来构造: 1位格雷码有两个码字 (n+1)位格雷码中的前2n个码字等于n位格雷码的码字,按顺序书写,加前缀0 (n+1)位格雷码中的后2n个码字等于n位格雷码的码字,按逆序书写,加前缀1 n+1位格雷码的集合 = n位格雷码集合(顺序)加前缀0 + n位格雷码集合(逆序)加前缀1 2位格雷码3位格雷码4位格雷码4位自然二进制码00

01

11

10 000

001

011

010

110

111

101

100 0000

0001

0011

0010

0110

0111

0101

0100

1100

1101

1111

1110

1010

1011

1001

1000 0000

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

1111 二进制码→格雷码(编码):

此方法从对应的n位二进制码字中直接得到n位格雷码码字,步骤如下: 对n位二进制的码字,从右到左,以0到n-1编号 如果二进制码字的第i位和i+1位相同,则对应的格雷码的第i位为0,否则为1(当i+1=n时,二进制码字的第n位被认为是0,即第n-1位不变) 公式表示:(G:格雷码,B:二进制码) 例如:二进制码0101,为4位数,所以其所转为之格雷码也必为4位数,因此可取转成之二进位码第五位为0,即0 b3 b2 b1 b0。

0 xor 0=0,所以g3=0

0 xor 1=1,所以g2=1

1 xor 0=1,所以g1=1

0 xor 1=1,所以g0=1

因此所转换为之格雷码为0111 格雷码→二进制码(解码):

从左边第二位起,将每位与左边一位解码后的值异或,作为该位解码后的值(最左边一位依然不变)。依次异或,直到最低位。依次异或转换后的值(二进制数)就是格雷码转换后二进制码的值。

公式表示:(G:格雷码,B:二进制码)

原码:p[n:0];格雷码:c[n:0](n∈N);编码:c=G(p);解码:p=F(c);

书写时按从左向右标号依次减小,即MSB-LSB,编解码也按此顺序进行 举例:

如果采集器器采到了格雷码:1010

就要将它变为自然二进制:

0 与第四位 1 进行异或结果为 1

上面结果1与第三位0异或结果为 1

上面结果1与第二位1异或结果为 0

上面结果0与第一位0异或结果为 0

因此最终结果为:1100 这就是二进制码即十进制 12

当然人看时只需对照表1一下子就知道是12 ...................c[n]=p[n],

解码: 利用卡诺图相邻两格只有一位变化以及卡诺图的变量取值以低阶格雷码的顺序排布的特征,可以递归得到高阶格雷码。由于此方法相对繁琐,使用较少。生成格雷码的步骤如下: 将卡诺图变量分为两组,变量数目相近(最好相等) 以逻辑变量高位在左低位在右建立卡诺图 从卡诺图的左上角以之字形到右上角最后到左下角遍历卡诺图,依次经过格子的变量取值即为典型格雷码的顺序 三位格雷码(三位格雷码由建立在二位基础上) AB╲ C 0 1 00 0→ 1↓ 01 ↓2 ←3 11 6→ 7↓ 10 4 ←5 格雷码次序:000起点→001→011→010→110→111→101→100终点

四位格雷码 AB╲CD 00 01 11 10 00 0→ 1→ 3→ 2↓ 01 ↓4 ←5 ←7 ←6 11 12→ 13→ 15→ 14↓ 10 8 ←9 ←11 ←10 格雷码次序:0000起点→0001→0011→0010→0110→0111→0101→0100→1100→1101→

1111→1110→1010→1011→1001→1000终点 用异或代替加减进行二进制竖式乘除,称为异或乘除,它的特点是无进退位。

如:10101除以11将变成1100余1。

二进制转格雷码:

只要异或乘以二分之三,即二进制的1.1,然后忽略小数部分;也可以理解成异或乘以三(即11),再右移一位。

格雷码转二进制:

异或除以三分之二,即除以1.1,忽略余数;或者左移一位,再异或除以三,忽略余数。

格雷码转二进制公式

格雷码转二进制公式:二进位码第n位=二进位码第(n+1)位+格雷码第n位。因为二进位码和格雷码皆有相同位数,所以二进位码可从最高位的左边位元取0,以进行计算。