密码子的特点包含:
1、遗传密码子是三联体密码:一个密码子由信使核糖核酸(mRNA)上相邻的三个碱基组成。
2、密码子具有通用性:不同的生物密码子基本相同,即共用一套密码子。
3、遗传密码子无逗号:两个密码子间没有标点符号,密码子与密码子之间没有任何不编码的核苷酸,读码必须按照一定的读码框架,从正确的起点开始,一个不漏地一直读到终止信号。
4、遗传密码子不重叠,在多核苷酸链上任何两个相邻的密码子不共用任何核苷酸。
5、密码子具有简并性:除了甲硫氨酸和色氨酸外,每一个氨基酸都至少有两个密码子。这样可以在一定程度内,使氨基酸序列不会因为某一个碱基被意外替换而导致氨基酸错误。
6、密码子阅读与翻译具有一定的方向性:从5'端到3'端。
7、有起始密码子和终止密码子,起始密码子有两种,一种是甲硫氨酸(AUG),一种是缬氨酸(GUG),而终止密码子(有3个,分别是UAA、UAG、UGA)没有相应的转运核糖核酸(tRNA)存在,只供释放因子识别来实现翻译的终止。
密码子的应用:
1、提高基因的异源表达
可通过分析密码子使用模式,预测目的基因的最佳宿主;或者应用基因工程手段,为目的基因表达提供最优的密码子使用模式。3种不同的方式,目的都是利用密码子偏爱性来提高异源基因的表达。
2、翻译起始效应
mRNA浓度是翻译起始速率的主要影响因素之一,密码子直接影响转录效率,决定mRNA浓度。如单子叶植物在“翻译起始区”的密码子偏性大于“翻译终止区”,暗示“翻译起始区”的密码子使用对提高蛋白质翻译的效率和精确性更为重要,因此,通过修饰编码区5′端的DNA序列,来提高蛋白质的表达水平将有望成为可能。
3、影响蛋白质的结构与功能
基因的密码子偏性与所编码蛋白质结构域的连接区和二级结构单元的连接区有关、翻译速率在连接区会降低。
通过聚类分析的方法研究发现,哺乳动物MHC基因的密码子偏爱性与所编码蛋白质的三级结构密切相关,并可通过影响mRNA不同区域的翻译速度,来改变编码蛋白质的空间构象。
那是肯定的,简单说起始密码子就是转录开始的第一个密码子,是一个转录开始的信息!当核糖体识别到这个密码子的时候才会开始转录,直至遇到终止密码子的时候结束转录!
是的,均来自编码区的转录。不可能来自非编码区。
————————
基因分为:编码区,非编码区。编码区是指能够转录信使RNA的部分,它能够合成相应的蛋白质;而非编码区是不能够转录信使RNA的DNA结构,但是它能够调控遗传信息的表达。
真核生物的基因组成是编码区和非编码区,其中编码区是由外显子和内含子组成的,但是其中内含子又是非编码序列,所以说真核细胞基因结构中,非编码区和内含子是非编码序列 。
内含子属于编码区。含有内含子的基因能转录出前体RNA,再由内含子转录出来的部分进行自我切割,才得到成熟的mRNA,没有内含子也就没有自我切割。
原核细胞只有编码区和非编码区!没有内含子和外显子之分。真核生物才有内含子和外显子。
遗传信息由DNA到传递到mRNA的过程称之为转录,再由mRNA到蛋白质的过程称之为翻译。在mRNA上由ATG起始每三个碱基可以对应一种氨基酸,这三个碱基的顺序称之为密码子。而反密码子则是tRNA上用于和mRNA上密码子互补配对的三联体碱基序列。