加法密码就是真典密码学中的恺撒密码格式是:密文=(明文+密钥)mod26,剩法密码是恺撒密码发展出来,格式是:密文=明文x实钥mon26;置换密码就是在简单的纵行换位密码中,明文以固定的宽度水平的写在一张图表纸上,密文按垂直方向读出,解密就是密文按相同的宽度垂直的写在图表纸上,然后水平的读出明文。希尔密码(Hill Cipher)是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明。每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果MOD26;Vigenere是恺撒密码演变而来。使用一系列凯撒密码组成密码字母表的加密算法,属于多表密码的一种简单形式。
有兴趣可以了解一下古典密码学,这里面都有。
希尔密码(Hill Cipher)是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明。每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果MOD26。
随着科技的日新月异和人们对信用卡、计算机的依赖性的加强,密码学显得愈来愈重要。密码学是一门关于加密和解密、密文和明文的学科。若将原本的符号代换成另一种符号,即可称之为广义的密码。狭义的密码主要是为了保密,是一种防止窃文者得知内容而设的另一种符号文字,也是一般人所熟知的密码。
使用信用卡、网络账号及密码、电子信箱、电子签名等都需要密码。为了方便记忆,许多人用生日、电话号码、门牌号码记做密码,但是这样安全性较差。
为了使密码更加复杂,更难解密,产生了许多不同形式的密码。密码的函数特性是明文对密码为一对一或一对多的关系,即明文是密码的函数。传统密码中有一种叫移位法,移位法基本型态是加法加密系统C=P+s(mod m)。一般来说,我们以1表示A,2表示B,……,25表示Y,26表示Z,以此类推。由于s=0时相当于未加密,而0≤s≤m-1(s≥m都可用0≤s≤m-1取代),因此,整个系统只有m-1种变化。换言之,只要试过m-1次,机密的信息就会泄漏出去。
由此看来,日常生活中的密码和传统的密码的可靠性较差,我们有必要寻求一种容易将字母的自然频度隐蔽或均匀化,从而有利于统计分析的安全可靠的加密方法。希尔密码能基本满足这一要求。
不难看出,希尔密码算法中有两个非常重要的条件。第一个条件是字符(信息)与数字对应表,当加密矩阵的阶数n(本文实例中的加密矩阵的阶数n=3)越大,破译的难度就会增大,此时计算量也大,我们可以借助有关数学软件如Mathematica提高运算效率。第二个条件是加密矩阵,如何定义、求解这个矩阵对于密码的加密和破译至关重要。
从破译密码的角度来看,传统的密码有一个致命弱点,就是破译者可从统计出来的字符频率中找到规律,进而找出破译的突破口,尤其是在计算机技术高度发达的今天,破译的速度更快。希尔密码算法则完全克服了这一缺陷,它通过采用线性代数中的矩阵乘法运算和逆运算,能够较好地抵抗频率分析,很难被攻破。
希尔密码体系为破译者至少设置了三道关口,加大了破译难度。破译希尔密码的关键是猜测文字被转换成几维向量(列矩阵的行数)、所对应的字母表是怎样排列的,更为重要的是要设法获取加密矩阵A。要破解密码,向量的维数、字母的排列表和加密矩阵三者缺一不可。古今中外的谍报战中,敌对双方总是千方百计地获取破解对方密码的钥匙,但要想获取希尔密码的三把钥匙谈何容易。
世界上没有攻不破的密码,希尔密码也不例外。希尔密码算法的缺点在于线性变换的安全性很脆弱,易被攻击击破,黑客正是利用各种密码的弱点来向用户频频发起攻击的。尽管如此,希尔密码仍不失为一种简便高效的密码。
希尔密码(Hill Password)是运用基本矩阵论原理的替换密码,由Lester S. Hill在1929年发明。每个字母当作26进制数字:A=0, B=1, C=2... 一串字母当成n维向量,跟一个n×n的矩阵相乘,再将得出的结果MOD26。注意用作加密的矩阵(即密匙)在\mathbb_^n必须是可逆的,否则就不可能译码。只有矩阵的行列式和26互质,才是可逆的。