维基利亚密码转换器(维吉尼亚密码转化器)

2023-02-17 0:18:17 摩斯密码知识 思思

维吉尼亚密码中密钥,明文,密文

明文:是看的懂的语言文字

密文:是看不懂的语言文字

密钥:是把看的懂的语言文字转换成看不懂的语言文字

明文:BOSE

密钥:YZ

密文:ZNQD

维基利亚密码转换器(维吉尼亚密码转化器) 第1张

除了栅栏密码,恺撒密码和维吉尼亚密码,还有哪些密码?

培根密码

弗朗西斯·培根,英国人,他是第一个意识到科学技术能够改变世界面貌的哲学家。他不仅意识到这一点,而且积极投入到科学技术的探索中。他对密码学的兴趣很浓,设计出的密码也丰富了密码学的内容。

他设计的密码非常独特,它可以不加过多的“雕饰”,几乎以本来的“素面”在你眼前晃过,而不会引起你的注意。

培根所用的密码是一种本质上用二进制数设计的。不过,他没有用通常的0和1来表示,而是采用a和b。下面是他设计的26个英文字母二进制表示法。

A aaaaa

B aaaab

C aaaba

D aaabb

E aabaa

F aabab

G aabba

H aabbb

I abaaa

J abaab

K ababa

L ababb

M abbaa

N abbab

O abbba

P abbbb

Q baaaa

R baaab

S baaba

T baabb

U babaa

V babab

W babba

X babbb

Y bbaaa

Z bbaab

编写密码时,把密文每五个字母为一组,凡是其中的正体字母代表a,斜体字母代表b。随意选取句子或文章,就可以通过改变字母的写法来加密了。

此外,还有

字母表顺序-数字

进制转换密码

Mod算法

倒序

间隔

字母频率

凯撒密码(Caesar Shifts, Simple Shift)

凯撒移位(中文版)

栅栏密码(The Rail-Fence Cipher)

维吉尼亚密码(Vigenère Cipher)

Polybius密码(Polybius Cipher)

ADFGX/ADFGVX密码(ADFGX/ADFGVX Cipher)

ADFGX

ADFGVX

乘法密码(Multiplication Cipher)

仿射密码(Affine Shift)

希尔密码(Hill Cipher)

加密

解密

Playfair密码(Playfair Cipher)

摩斯电码

置换密码(Transposition Cipher)

替代密码(Monoalphabetic Substitution)

字母表数字

字母表代码

反字母表

随机乱序字母

棋盘密码

键盘密码

键盘移位

软键盘密码

数字小键盘密码

手机键盘密码

数字谐音密码

数字记忆编码

百度/Google/网页字符

百度字符(GB2312)

Google字符(URI)

网页编码(Unicode)

Alt+数字小键盘

MD5

超字数不一一解释了。可以百度。

密码学的学科分类

Autokey密码

置换密码

二字母组代替密码 (by Charles Wheatstone)

多字母替换密码

希尔密码

维吉尼亚密码

替换式密码

凯撒密码

摩尔斯电码

ROT13

仿射密码

Atbash密码

换位密码

Scytale

Grille密码

VIC密码 (一种复杂的手工密码,在五十年代早期被至少一名苏联间谍使用过,在当时是十分安全的)

流密码

LFSR流密码

EIGamal密码

RSA密码

对传统密码学的攻击

频率分析

重合指数

经典密码学

在近代以前,密码学只考虑到信息的机密性(confidentiality):如何将可理解的信息转换成难以理解的信息,并且使得有秘密信息的人能够逆向回复,但缺乏秘密信息的拦截者或窃听者则无法解读。近数十年来,这个领域已经扩展到涵盖身分认证(或称鉴权)、信息完整性检查、数字签名、互动证明、安全多方计算等各类技术。

古中国周朝兵书《六韬.龙韬》也记载了密码学的运用,其中的《阴符》和《阴书》便记载了周武王问姜子牙关于征战时与主将通讯的方式: 太公曰:“主与将,有阴符,凡八等。有大胜克敌之符,长一尺。破军擒将之符,长九寸。降城得邑之符,长八寸。却敌报远之符,长七寸。警众坚守之符,长六寸。请粮益兵之符,长五寸。败军亡将之符,长四寸。失利亡士之符,长三寸。诸奉使行符,稽留,若符事闻,泄告者,皆诛之。八符者,主将秘闻,所以阴通言语,不泄中外相知之术。敌虽圣智,莫之能识。”

武王问太公曰:“… 符不能明;相去辽远,言语不通。为之奈何?”

太公曰:“诸有阴事大虑,当用书,不用符。主以书遗将,将以书问主。书皆一合而再离,三发而一知。再离者,分书为三部。三发而一知者,言三人,人操一分,相参而不相知情也。此谓阴书。敌虽圣智,莫之能识。” 阴符是以八等长度的符来表达不同的消息和指令,可算是密码学中的替代法(en:substitution),把信息转变成敌人看不懂的符号。至于阴书则运用了移位法,把书一分为三,分三人传递,要把三份书重新拼合才能获得还原的信息。

除了应用于军事外,公元四世纪婆罗门学者伐蹉衍那(en:Vatsyayana) 所书的《欲经》4 中曾提及到用代替法加密信息。书中第45项是秘密书信(en:mlecchita-vikalpa) ,用以帮助妇女隐瞒她们与爱郞之间的关系。其中一种方法是把字母随意配对互换,如套用在罗马字母中,可有得出下表: A B C D E F G H I J K L M Z Y X W V U T S R Q P O N 由经典加密法产生的密码文很容易泄漏关于明文的统计信息,以现代观点其实很容易被破解。阿拉伯人津帝(en:al-Kindi)便提及到如果要破解加密信息,可在一篇至少一页长的文章中数算出每个字母出现的频率,在加密信件中也数算出每个符号的频率,然后互相对换,这是频率分析的前身,此后几乎所有此类的密码都马上被破解。但经典密码学仍未消失,经常出现在谜语之中(见en:cryptogram)。这种分析法除了被用在破解密码法外,也常用于考古学上。在破解古埃及象形文字(en:Hieroglyphs)时便运用了这种解密法。 标准机构

the Federal Information Processing Standards Publication program (run by NIST to produce standards in many areas to guide operations of the US Federal government; many FIPS Pubs are cryptography related,ongoing)

the ANSI standardization process (produces many standards in many areas; some are cryptography related,ongoing)

ISO standardization process (produces many standards in many areas; some are cryptography related,ongoing)

IEEE standardization process (produces many standards in many areas; some are cryptography related,ongoing)

IETF standardization process (produces many standards (called RFCs) in many areas; some are cryptography related,ongoing)

See Cryptography standards

加密组织

NSA internal evaluation/selections (surely extensive,nothing is publicly known of the process or its results for internal use; NSA is charged with assisting NIST in its cryptographic responsibilities)

GCHQ internal evaluation/selections (surely extensive,nothing is publicly known of the process or its results for GCHQ use; a division of GCHQ is charged with developing and recommending cryptographic standards for the UK government)

DSD Australian SIGINT agency - part of ECHELON

Communications Security Establishment (CSE) - Canadian intelligence agency.

努力成果

the DES selection (NBS selection process,ended 1976)

the RIPE division of the RACE project (sponsored by the European Union,ended mid-'80s)

the AES competition (a 'break-off' sponsored by NIST; ended 2001)

the NESSIE Project (evaluation/selection program sponsored by the European Union; ended 2002)

the CRYPTREC program (Japanese government sponsored evaluation/recommendation project; draft recommendations published 2003)

the Internet Engineering Task Force (technical body responsible for Internet standards -- the Request for Comment series: ongoing)

the CrypTool project (eLearning programme in English and German; freeware; exhaustive educational tool about cryptography and cryptanalysis)

加密散列函数 (消息摘要算法,MD算法) 

加密散列函数

消息认证码

Keyed-hash message authentication code

EMAC (NESSIE selection MAC)

HMAC (NESSIE selection MAC; ISO/IEC 9797-1,FIPS and IETF RFC)

TTMAC 也称 Two-Track-MAC (NESSIE selection MAC; K.U.Leuven (Belgium) debis AG (Germany))

UMAC (NESSIE selection MAC; Intel,UNevada Reno,IBM,Technion, UCal Davis)

MD5 (系列消息摘要算法之一,由MIT的Ron Rivest教授提出; 128位摘要)

SHA-1 (NSA开发的160位摘要,FIPS标准之一;第一个发行发行版本被发现有缺陷而被该版本代替; NIST/NSA 已经发布了几个具有更长'摘要'长度的变种; CRYPTREC推荐 (limited))

SHA-256 (NESSIE 系列消息摘要算法,FIPS标准之一180-2,摘要长度256位 CRYPTREC recommendation)

SHA-384 (NESSIE 列消息摘要算法,FIPS标准之一180-2,摘要长度384位; CRYPTREC recommendation)

SHA-512 (NESSIE 列消息摘要算法,FIPS标准之一180-2,摘要长度512位; CRYPTREC recommendation)

RIPEMD-160 (在欧洲为 RIPE 项目开发,160位摘要;CRYPTREC 推荐 (limited))

Tiger (by Ross Anderson et al)

Snefru

Whirlpool (NESSIE selection hash function,Scopus Tecnologia S.A. (Brazil) K.U.Leuven (Belgium))

公/私钥加密算法(也称 非对称性密钥算法)

ACE-KEM (NESSIE selection asymmetric encryption scheme; IBM Zurich Research)

ACE Encrypt

Chor-Rivest

Diffie-Hellman(key agreement; CRYPTREC 推荐)

El Gamal (离散对数)

ECC(椭圆曲线密码算法) (离散对数变种)

PSEC-KEM (NESSIE selection asymmetric encryption scheme; NTT (Japan); CRYPTREC recommendation only in DEM construction w/SEC1 parameters) )

ECIES (Elliptic Curve Integrated Encryption System; Certicom Corp)

ECIES-KEM

ECDH (椭圆曲线Diffie-Hellman 密钥协议; CRYPTREC推荐)

EPOC

Merkle-Hellman (knapsack scheme)

McEliece

NTRUEncrypt

RSA (因数分解)

RSA-KEM (NESSIE selection asymmetric encryption scheme; ISO/IEC 18033-2 draft)

RSA-OAEP (CRYPTREC 推荐)

Rabin cryptosystem (因数分解)

Rabin-SAEP

HIME(R)

XTR

公/私钥签名算法

DSA(zh:数字签名;zh-tw:数位签章算法) (来自NSA,zh:数字签名;zh-tw:数位签章标准(DSS)的一部分; CRYPTREC 推荐)

Elliptic Curve DSA (NESSIE selection digital signature scheme; Certicom Corp); CRYPTREC recommendation as ANSI X9.62,SEC1)

Schnorr signatures

RSA签名

RSA-PSS (NESSIE selection digital signature scheme; RSA Laboratories); CRYPTREC recommendation)

RSASSA-PKCS1 v1.5 (CRYPTREC recommendation)

Nyberg-Rueppel signatures

MQV protocol

Gennaro-Halevi-Rabin signature scheme

Cramer-Shoup signature scheme

One-time signatures

Lamport signature scheme

Bos-Chaum signature scheme

Undeniable signatures

Chaum-van Antwerpen signature scheme

Fail-stop signatures

Ong-Schnorr-Shamir signature scheme

Birational permutation scheme

ESIGN

ESIGN-D

ESIGN-R

Direct anonymous attestation

NTRUSign用于移动设备的公钥加密算法,密钥比较短小但也能达到高密钥ECC的加密效果

SFLASH (NESSIE selection digital signature scheme (esp for smartcard applications and similar); Schlumberger (France))

Quartz

秘密钥算法 (也称 对称性密钥算法)

流密码

A5/1,A5/2 (GSM移动电话标准中指定的密码标准)

BMGL

Chameleon

FISH (by Siemens AG)

二战'Fish'密码

Geheimfernschreiber (二战时期Siemens AG的机械式一次一密密码,被布莱奇利(Bletchley)庄园称为STURGEON)

Schlusselzusatz (二战时期 Lorenz的机械式一次一密密码,被布莱奇利(Bletchley)庄园称为[[tunny)

HELIX

ISAAC (作为伪随机数发生器使用)

Leviathan (cipher)

LILI-128

MUG1 (CRYPTREC 推荐使用)

MULTI-S01 (CRYPTREC 推荐使用)

一次一密 (Vernam and Mauborgne,patented mid-'20s; an extreme stream cypher)

Panama

Pike (improvement on FISH by Ross Anderson)

RC4 (ARCFOUR) (one of a series by Prof Ron Rivest of MIT; CRYPTREC 推荐使用 (limited to 128-bit key))

CipherSaber (RC4 variant with 10 byte random IV,易于实现)

SEAL

SNOW

SOBER

SOBER-t16

SOBER-t32

WAKE

分组密码

分组密码操作模式

乘积密码

Feistel cipher (由Horst Feistel提出的分组密码设计模式)

Advanced Encryption Standard (分组长度为128位; NIST selection for the AES,FIPS 197,2001 -- by Joan Daemen and Vincent Rijmen; NESSIE selection; CRYPTREC 推荐使用)

Anubis (128-bit block)

BEAR (由流密码和Hash函数构造的分组密码,by Ross Anderson)

Blowfish (分组长度为128位; by Bruce Schneier,et al)

Camellia (分组长度为128位; NESSIE selection (NTT Mitsubishi Electric); CRYPTREC 推荐使用)

CAST-128 (CAST5) (64 bit block; one of a series of algorithms by Carlisle Adams and Stafford Tavares,who are insistent (indeed,adamant) that the name is not due to their initials)

CAST-256 (CAST6) (128位分组长度; CAST-128的后继者,AES的竞争者之一)

CIPHERUNICORN-A (分组长度为128位; CRYPTREC 推荐使用)

CIPHERUNICORN-E (64 bit block; CRYPTREC 推荐使用 (limited))

CMEA - 在美国移动电话中使用的密码,被发现有弱点.

CS-Cipher (64位分组长度)

DESzh:数字;zh-tw:数位加密标准(64位分组长度; FIPS 46-3,1976)

DEAL - 由DES演变来的一种AES候选算法

DES-X 一种DES变种,增加了密钥长度.

FEAL

GDES -一个DES派生,被设计用来提高加密速度.

Grand Cru (128位分组长度)

Hierocrypt-3 (128位分组长度; CRYPTREC 推荐使用))

Hierocrypt-L1 (64位分组长度; CRYPTREC 推荐使用 (limited))

International Data Encryption Algorithm (IDEA) (64位分组长度--苏黎世ETH的James Massey X Lai)

Iraqi Block Cipher (IBC)

KASUMI (64位分组长度; 基于MISTY1,被用于下一代W-CDMAcellular phone 保密)

KHAZAD (64-bit block designed by Barretto and Rijmen)

Khufu and Khafre (64位分组密码)

LOKI89/91 (64位分组密码)

LOKI97 (128位分组长度的密码,AES候选者)

Lucifer (by Tuchman et al of IBM,early 1970s; modified by NSA/NBS and released as DES)

MAGENTA (AES 候选者)

Mars (AES finalist,by Don Coppersmith et al)

MISTY1 (NESSIE selection 64-bit block; Mitsubishi Electric (Japan); CRYPTREC 推荐使用 (limited))

MISTY2 (分组长度为128位:Mitsubishi Electric (Japan))

Nimbus (64位分组)

Noekeon (分组长度为128位)

NUSH (可变分组长度(64 - 256位))

Q (分组长度为128位)

RC2 64位分组,密钥长度可变.

RC6 (可变分组长度; AES finalist,by Ron Rivest et al)

RC5 (by Ron Rivest)

SAFER (可变分组长度)

SC2000 (分组长度为128位; CRYPTREC 推荐使用)

Serpent (分组长度为128位; AES finalist by Ross Anderson,Eli Biham,Lars Knudsen)

SHACAL-1 (256-bit block)

SHACAL-2 (256-bit block cypher; NESSIE selection Gemplus (France))

Shark (grandfather of Rijndael/AES,by Daemen and Rijmen)

Square (father of Rijndael/AES,by Daemen and Rijmen)

3-Way (96 bit block by Joan Daemen)

TEA(小型加密算法)(by David Wheeler Roger Needham)

Triple DES (by Walter Tuchman,leader of the Lucifer design team -- not all triple uses of DES increase security,Tuchman's does; CRYPTREC 推荐使用 (limited),only when used as in FIPS Pub 46-3)

Twofish (分组长度为128位; AES finalist by Bruce Schneier,et al)

XTEA (by David Wheeler Roger Needham)

多表代替密码机密码

Enigma (二战德国转轮密码机--有很多变种,多数变种有很大的用户网络)

紫密(Purple) (二战日本外交最高等级密码机;日本海军设计)

SIGABA (二战美国密码机,由William Friedman,Frank Rowlett,等人设计)

TypeX (二战英国密码机)

Hybrid code/cypher combinations

JN-25 (二战日本海军的高级密码; 有很多变种)

Naval Cypher 3 (30年代和二战时期英国皇家海军的高级密码)

可视密码

有密级的 密码 (美国)

EKMS NSA的电子密钥管理系统

FNBDT NSA的加密窄带话音标准

Fortezza encryption based on portable crypto token in PC Card format

KW-26 ROMULUS 电传加密机(1960s - 1980s)

KY-57 VINSON 战术电台语音加密

SINCGARS 密码控制跳频的战术电台

STE 加密电话

STU-III 较老的加密电话

TEMPEST prevents compromising emanations

Type 1 products

虽然频率分析是很有效的技巧,实际上加密法通常还是有用的。不使用频率分析来破解一个信息需要知道是使用何种加密法,因此才会促成了谍报、贿赂、窃盗或背叛等行为。直到十九世纪学者们才体认到加密法的算法并非理智或实在的防护。实际上,适当的密码学机制(包含加解密法)应该保持安全,即使敌人知道了使用何种算法。对好的加密法来说,钥匙的秘密性理应足以保障资料的机密性。这个原则首先由奥古斯特·柯克霍夫(Auguste Kerckhoffs)提出并被称为柯克霍夫原则(Kerckhoffs' principle)。信息论始祖克劳德·艾尔伍德·香农(Claude Shannon)重述:“敌人知道系统。”

大量的公开学术研究出现,是现代的事,这起源于一九七零年代中期,美国国家标准局(National Bureau of Standards,NBS;现称国家标准技术研究所,National|Institute of Standards and Technology,NIST)制定数字加密标准(DES),Diffie和Hellman提出的开创性论文,以及公开释出RSA。从那个时期开始,密码学成为通讯、电脑网络、电脑安全等上的重要工具。许多现代的密码技术的基础依赖于特定基算问题的困难度,例如因子分解问题或是离散对数问题。许多密码技术可被证明为只要特定的计算问题无法被有效的解出,那就安全。除了一个著名的例外:一次垫(one-time pad,OTP),这类证明是偶然的而非决定性的,但是是目前可用的最好的方式。

密码学算法与系统设计者不但要留意密码学历史,而且必须考虑到未来发展。例如,持续增加计算机处理速度会增进暴力攻击法(brute-force attacks)的速度。量子计算的潜在效应已经是部份密码学家的焦点。

二十世纪早期的密码学本质上主要考虑语言学上的模式。从此之后重心转移,数论。密码学同时也是工程学的分支,但却是与别不同,因为它必须面对有智能且恶意的对手,大部分其他的工程仅需处理无恶意的自然力量。检视密码学问题与量子物理间的关连也是热门的研究。

现代密码学大致可被区分为数个领域。对称钥匙密码学指的是传送方与接收方都拥有相同的钥匙。直到1976年这都还是唯一的公开加密法。

现代的研究主要在分组密码(block cipher)与流密码(stream cipher)及其应用。分组密码在某种意义上是阿伯提的多字符加密法的现代化。分组密码取用明文的一个区块和钥匙,输出相同大小的密文区块。由于信息通常比单一区块还长,因此有了各种方式将连续的区块编织在一起。DES和AES是美国联邦政府核定的分组密码标准(AES将取代DES)。尽管将从标准上废除,DES依然很流行(3DES变形仍然相当安全),被使用在非常多的应用上,从自动交易机、电子邮件到远端存取。也有许多其他的区块加密被发明、释出,品质与应用上各有不同,其中不乏被破解者。

流密码,相对于区块加密,制造一段任意长的钥匙原料,与明文依位元或字符结合,有点类似一次一密密码本(one-time pad)。输出的串流根据加密时的内部状态而定。在一些流密码上由钥匙控制状态的变化。RC4是相当有名的流密码。

密码杂凑函数(有时称作消息摘要函数,杂凑函数又称散列函数或哈希函数)不一定使用到钥匙,但和许多重要的密码算法相关。它将输入资料(通常是一整份文件)输出成较短的固定长度杂凑值,这个过程是单向的,逆向操作难以完成,而且碰撞(两个不同的输入产生相同的杂凑值)发生的机率非常小。

信息认证码或押码(Message authentication codes,MACs)很类似密码杂凑函数,除了接收方额外使用秘密钥匙来认证杂凑值。