至今未解的数学之谜(至今未解的数学之谜是什么)

2023-02-27 23:33:54 摩斯密码知识 思思

数学三大未解之谜

即费马猜想、四色猜想和哥德巴赫猜想。

费马猜想的证明于1994年由英国数学家安德鲁·怀尔斯(Andrew Wiles)完成,遂称费马大定理;

四色猜想的证明于1976年由美国数学家阿佩尔(Kenneth Appel)与哈肯(Wolfgang Haken)借助计算机完成,遂称四色定理;

哥德巴赫猜想尚未解决,目前最好的成果(陈氏定理)乃于1966年由中国数学家陈景润取得。这三个问题的共同点就是题面简单易懂,内涵深邃无比,影响了一代代的数学家。

至今未解的数学之谜(至今未解的数学之谜是什么) 第1张

数学史上的未解之谜

欧拉方程Euler’s equation对无粘性流体微团应用牛顿第二定律得到的运动微

分方程。欧拉方程是无粘性流体动力学中最重要的基本

方程,应用十分广泛。1755年,瑞士数学家L.欧拉在《流

体运动的一般原理》一书中首先提出这个方程。

在研究一些物理问题,如热的传导、圆膜的振动、电磁波的传播等问题时,常常碰到如下形式的方程:

(ax^2D^2+bxD+c)y=f(x),

其中a、b、c是常数,这是一个二阶变系数线性微分方程。它的系数具有一定的规律:二阶导数D^2y的系数是二次函数ax^2,一阶导数Dy的系数是一次函数bx,y的系数是常数。这样的方程称为欧拉方程。

例如:(x^2D^2-xD+1)y=0,(x^2D^2-2xD+2)y=2x^3-x等都是欧拉方程。

化学中足球烯即C-60和此方程有关

证明过程:

利用级数。

exp(x)=1+x+(x^2)/2!+(x^3)/3!+(x^4)/4!+……

sin(x)=x-(x^3)/3!+(x^5)/5!-(x^7)/7!+……

cos(x)=1-(x^2)/2!+(x^4)/4!-(x^6)/6!+……

其中exp(x)=e^x

于是exp(ix)=1+ix-(x^2)/2!-i(x^3)/3!+(x^4)/4!+i(x^5)/5!+……

比较以上3式,就得出欧拉公式了 [编辑本段]泛函的欧拉方程(by zhengpin1390)(二)、泛函的欧拉方程

欧拉方程是泛函极值条件的微分表达式,求解泛函的欧拉方程,即可得到使泛函取极值的驻函数,将变分问题转化为微分问题。

(1) 最简单的欧拉方程:

设函数F(x,y,y') 是三个变量的连续函数,且点(x,y)位于有界闭区域B内,则对形如

的变分,若其满足以下条件:

c) 在有界闭区域B内存在某条特定曲线y。(x) ,使泛函取极值,且此曲线具有二阶连续导数。

则函数y。(x) 满足微分方程:

上式即为泛函Q[y]的欧拉方程。

(2)含有自变函数高阶倒数的泛函的欧拉方程

一般来说,对于下述泛函:

在类似条件下,可以得到对应的欧拉方程为:

(3)含有多个自变函数的泛函的欧拉方程

对于下述泛函:

其欧拉方程组为:

(4)多元函数的泛函及其欧拉方程

此处仅考虑二元函数的情况,对如下所示多元函数的泛函:

数学界有哪些让你惊叹“怎么这都不知道”的未解之谜?

有理距离

在平面上是否存在一个点,它到单位正方形的四个顶点的距离都是有理数?

第一次知道这个问题竟然没被解决时,我很是吃惊——我原本还以为这个问题会有一些很平凡的解呢。然而,仔细想想也不奇怪,这和很多其他的数学难题一样,本质上都是 Diophantus 方程,其解的存在性都是很难判断的。只不过,某些问题的叙述方式会给人带来一种格外基本、格外初等的感觉。与这个问题类似的是 Euler 完美长方体问题:是否存在一个长方体,它的长、宽、高、所有面对角线以及体对角线的长度都是有理数?事实上,还有很多“构造点集让距离满足一定关系”形式的数学问题,它们都是长期以来悬而未解的难题。

单位分数够用吗?

那么,一个自然的问题就是:是不是任何正有理数都可以写成有限个不同的单位分数的和呢?你可能会说:单位分数会越变越小,如果有理数很大的话,难道不会出现单位分数不够用的情况吗?这个问题相当于在问:1+1/2+1/3+……一项一项加起来的话,能达到要多大有多大的值吗?答案是肯定的!实际上,如果用上一点高等数学的话,我们可以证明,从1加到1/n,当n越来越大,这个和也会越来越接近ln(n)+γ,这里ln(n)是n的自然对数,而γ被称为欧拉-马歇罗尼常数。因为对数ln(n)会随着n增长而越变越大没有界限,所以自然可以要多大有多大。这个和在数学中又叫调和级数,有着广泛的应用。

从整数到多项式

我们在中学里就学过多项式。对于一个变量x,我们取它的一些次方\(x^a, x^b\)等等,乘上系数,然后加起来,就得到了一个多项式,比如说\(x^7+6x^3+4\),就是一个关于\(x\)的多项式。在这里,我们考虑那些系数都是复数的多项式,也就是复系数多项式。数学家们很早就发现,这些多项式与正整数有一种神奇的相似性:可以做加法、减法、乘法,也可以分解因数,可以求最大公约数和最小公倍数,同样有着唯一分解定理:正整数可以唯一分解成素数的乘积,而多项式也能唯一分解成所谓“不可约多项式”的乘积。基本上,在数论中对正整数性质的研究,很多都可以直接搬到多项式上来。于是,遇上有关正整数的问题,把它迁移到多项式之中,未尝不是一个提出问题的好办法。自然,因为多项式本来结构就比较复杂,相关的问题也更难解决,但这不妨碍数学家的步伐,毕竟他们要攻克的就是难题。

数学很有趣值得思考研究 。