1.了解基本响应曲线
滤波器的基本响应曲线包括:带通、低通、高通、带阻、双工器,每一个特定形状都决定了哪些频率可以通过,哪些不能通过。
无疑最常见的是带通滤波器。所有工程师都知道,带通滤波器允许两个特定频率之间的信号通过,对其它频率的信号进行抑制。例如声表面波滤波器(SAW)、晶体滤波器、陶瓷和腔体滤波器。制造商都采用了用滤波器中心频率两边0.5dB、1dB或3dB衰减点定义通频带的方法。
2.包括所有必要的技术参数
经常出现这一情况,工程师给出一个需要“一个100MHz带通滤波器”的简短要求,这一要求显然信息量太少了。给出所有必要的信息从详细给出所有频率参数开始,如:
中心频率(Fo):通常定义为带通滤波器(或带阻滤波器)的两个3dB点之间的中点,一般用两个3dB点的算术平均来表示。
截止频率(Fc):为低通滤波器或高通滤波器的通带到阻带开始的转换点,该转换点一般为3dB点。
抑制频率:信号衰减某些特定值或值的集合的特定频率或频率组。有时定义理想通带之外的频率区为抑制频率或频率组,所经过的衰减称为抑制。
滤波器类型决定了特定频率。对带通和带阻滤波器,特定频率为中心频率。对低通和高通滤波器,特定频率为截止频率。
为了完整起见,工程师还应定义下列特性,如:
阻带:滤波器不传输的特定频率值之间的频率带。
隔离:双工器中,考虑接收(Rx)通道时为抑制传输(Tx)频率的能力,考虑传输(Tx)频率时为抑制接收(Rx)频率的能力,称为Rx/Tx隔离。隔离度越高,滤波器能够将Rx信号与Tx信号隔离开的能力就越强,反之亦然。其结果是传输和接收信号都更加干净。
插入损耗(IL):表示器件中功率损耗的一个值,IL=10Log(Pl/Pin),与频率无关,其中Pl为负载功率,Pin为从发生器输入的功率。
回波损耗(RL):为滤波器性能的一种度量,表示滤波器输入和输出阻抗接近理想阻抗值的程度。回波损耗定义为:RL=10Log(Pr/Pin),与频率无关,其中Pr为反射回发生器的功率。
群延迟(GD):群延迟表示器件相位线性的大小。由于相位延迟出现于滤波器的输出端,了解这种相移随频率的变化是否为线性很重要。如果相移随频率非线性变化,输出波形将发生畸变。群延迟定义为相移随频率变化的导数。因为线性函数的导数为常数,所以线性相移引起的群延迟为常数。
形状因子(SF):滤波器的形状因子通常为阻带带宽(BW)与3dB带宽的比值。它是滤波器边缘的陡峭程度的一种量度。例如,如果40dB带宽为40MHz,3dB带宽10MHz,则形状因子为40/10=4。
阻抗:以欧姆为单位的滤波器源阻抗(输入)和端接阻抗(输出)。一般情况下,输入阻抗和输出阻抗相同。
相对衰减:测到的最小衰减点处衰减与理想抑制点的衰减的差异。通常,相对衰减以dBc为单位表示。
纹波(Ar):表示滤波器通频带平坦度的大小,一般以分贝表示。滤波器纹波的大小影响回波损耗。纹波越大,则回波损耗越严重,反之亦然。
抑制:同上。
工作温度:滤波器设计的工作温度范围。
3.不要追求不切实际的滤波器特性
工程师有时会提出如下的要求:“我需要通频带为1,490~1,510MHz,1,511MHz处的抑制大小为70dB。”这一要求无法实现。实际上,抑制是逐渐变化的,不是90°急剧下降,更实际的参数为偏离中心频率约10%。
另一个情况是要求滤波器例如“抑制1,960MHz频率以上的所有成分。”这时,工程师必须意识到不可能衰减该抑制频率直到无限高频率之间的所有频率。必须设置某些边界。更现实的方法或许是,将通频带附近的特定抑制频率衰减两到三倍。
4.争取实现合理的VSWR
常使用电压驻波比(VSWR)表示滤波器的效率,为一比值,大小在1到无穷大之间,用来表示反射能量的大小。1表示所有能量都无损耗通过。大于1的所有值都表示有部分能量被反射,即浪费了。
但是,在实际的电子电路中,1:1的VSWR几乎不可能达到。通常,比值1:5更实际一些。如果要求达到的值小于该值,则会降低效益成本比。
5.考虑功率处理能力
功率处理能力为以瓦为单位的额定平均功率,超过该值则滤波器性能会降低或者失效。此外还需要注意,滤波器的尺寸在某种程度上决定于其功率处理能力的要求。一般地,功率越大,则滤波器所占电路板面积越大。
6.同时、双向通讯中的隔离因素
隔离是双工器的一个特别重要的方面,从接收通道看时,隔离表示滤波器抑制传输频率的能力,反之亦然。隔离越大,则两者分得越开,传输信号和接收信号就越干净。
7.注意作出取舍
性能越高则成本越高。这正是为什么需要准确定义的原因,因为准确定义可以减少不需要的极端情况,因而能够避免不必要的费用开支。
除此之外,对其他因素也需要互相权衡。例如,抑制频率与中心频率越接近,则滤波器越复杂,这有时会造成插入损耗更大。
另外,滤波器性能越高通常使其占板面积越大。例如,从通频带到抑制的非常陡峭的转变需要具备更多腔体和段数,使滤波器更复杂。但是如果电路板费用很重要,则性能有时必须有所削减。
8.寻找可以在各种要求之间作出平衡的制造商
虽然滤波器销售商与滤波器性能的固有特性无关,但选择滤波器销售商时,还是需要像关注元件本身要求一样对此予以关注。一个优秀而稳定的专门生产滤波器的制造商,能时常生产出特定部件来弥补产品设计缺陷。
射频器件是无线连接的核心,是实现信号发送和接收的基础零件,有着广泛的应用。随着5G的到来,射频器件的需求将大幅增加,预计到2025年射频前端市场规模有望突破258亿美元。快速增长的市场让行业看到了机会,新的射频公司在不断地涌现出来,尤其是在国内,打造自主射频供应链就成为很多厂商的追求,但纵观现状,似乎差距还是很明显。不过,若通过提升设计能力,辅助调试工作来提升射频性能,国内射频产业还有很大的成长空间。
射频器件是无线连接的核心,是实现信号发送和接收的基础零件,有着广泛的应用。射频前端芯片包括射频开关、射频低噪声放大器、射频功率放大器、双工器、射频滤波器等芯片。
5G带来量价齐升
5G的引入,使得已经很复杂的射频前端变得更加复杂,随着射频前端的价格压力增加,这种现象可能会加剧。预计5G发展到成熟阶段,全网通的手机射频前端的Filters数量会从70余个增加为100余个,Switches数量亦会由10余个增为超30个,使得最终射频模组的成本持续增加。从2G时代的约3美元,增加到3G时代的8美元、4G时代的28美元,预计在5G时代,射频模组的成本会超过40美元。
市场规模不断扩大
在LTE时代,射频前端市场的增长来自于载波聚合和MIMO技术。5G要求增加频段,实现双重连接,下行方向过渡到4 x 4 MIMO,上行方向发展到2 x 2
MIMO,这将促进射频前端市场增长。此外,伴随着5G的商业化,现在已经形成的初步共识认为,5G标准下现有的移动通信、物联网通信标准将进行统一,因为未来在统一标准下射频前端芯片产品的应用领域会被进一步放大。
根据Yole数据,2018年全球射频前端市场规模为150亿美元。5G射频前端物料成本价从4G的28美元提升至40美元,以假设2020年5G手机出货量占比为13%来测算,2020年射频前端市场规模预计达到160亿美元;到2025年预计达到258亿美元,2018-2025年的复合年增长率为8%。
市场被四大厂商垄断
美日欧厂商长期垄断射频市场。射频前端领域设计及制造工艺复杂、门槛极高,现阶段射频前端市场主要集中在Skyworks、Broadcom、Murata、Qorvo四大IDM厂商,占据了超过九成的市场份额。此外,高通在LNA领域已经足够强大,通过整合TDK
EPCOS的滤波器业务,大有赶超Qorvo之势。
滤波器和PA是重头戏
射频器件包括射频开关和LNA,射频PA,滤波器,天线Tuner和毫米波FEM等。射频前端中价值量占比最高的是滤波器,其次是功率放大器,占比分别约为53%和33%,其余期间包括开关、谐波器、低噪声放大器等,合计占比约为14%。
数据表明,滤波器和PA是射频器件的重头戏,其中PA负责发射通道的信号放大,滤波器负责发射机接收信号的滤波。对于通信设备而言,没有PA,信号覆盖就会成为很大的问题;没有滤波器的设备更是相当于一块砖头,通信设备上通常安装30-40个滤波器就是为了避免干扰,让设备实现正常通信。
滤波器——国产突破尚待时日
目前,滤波器市场也被国外厂商所瓜分。传统SAW滤波器市场的主要供应商为Murata、TDK、太阳诱电等几家日本厂商,总计占据了全球市场份额的80%以上。BAW滤波器市场被博通(Broadcom)和Qorvo垄断。安华高和博通并购重组后,博通拥有了最具竞争力的产品组合,其推出的BAW滤波器目前在高端智能手机应用市场中占据统治地位。
PA——国产化有望突破
手机频段持续增加,PA的数量也随之增加。4G多模多频手机所需PA芯片5-7颗,预计5G时代手机内的PA或多达16颗。4G时代,功率放大器材料主要以GaAs为主,而未来更高频段的功率放大器将以GaN材料为主。当前PA市场主要被IDM巨头垄断,前三大厂商Skyworks、Qorvo、Broadcom合计占有超90%的市场份额。
目前国产PA厂商也在积极地介入这一市场,国内厂商大多采用“Fabless+Foundary”的产业模式,主攻芯片设计,且产品主要集中在中低端市场,同质化现象比较严重。出于供应链安全角度的考虑,华为海思的射频前端团队于2018年成立,目前研发进展顺利,首款PA模组Hi6D03已在Mate
20X上出现,预计海思将成为未来PA市场的重要力量。
产业链完整 国内厂商奋起直追
4G到5G的演进过程中,射频器件的复杂度逐渐提升,产品在设计、工艺和材料等方面都将发生递进式的变化。国产射频器件替代空间大,但困难也大。目前国内射频芯片产业链已经基本成熟,从设计到晶圆代工,再到封测,已经形成完整的产业链。从国际竞争力来讲,国内的射频设计水平还处在中低端。
PA和开关厂商,射频芯片产品销售额加起来大约5亿美金,大陆射频芯片厂商销售额大约3亿美金。全球PA和开关射频产品需求金额大约60亿美金。可见,国内厂商依然在起步阶段,市场话语权有限;滤波器方面,国内厂商销售总额不到1亿美金,全球市场需求在90亿美金。即以后通过提升设计能力,辅助调试工作来提升射频性能,国内射频产业还有很大的成长空间。
以上数据来源于前瞻产业研究院《中国射频器件行业战略规划和企业战略咨询报告》。
射频滤波器属于商标分类第9类0907群组;
经路标网统计,注册射频滤波器的商标达333件。
注册时怎样选择其他小项类:
1.选择注册(收音机信号调谐器,群组号:0907)类别的商标有1件,注册占比率达0.3%
2.选择注册(电子传输用缆线,群组号:0912)类别的商标有1件,注册占比率达0.3%
3.选择注册(同轴电缆,群组号:0912)类别的商标有1件,注册占比率达0.3%
4.选择注册(电影录制机.,群组号:0909)类别的商标有1件,注册占比率达0.3%
5.选择注册(数字化视频光盘播放器,群组号:0908)类别的商标有1件,注册占比率达0.3%
6.选择注册(摄像机安全设备,群组号:0908)类别的商标有1件,注册占比率达0.3%
7.选择注册(录制机频道扩展用硬件,群组号:0908)类别的商标有1件,注册占比率达0.3%
8.选择注册(专用安全摄像机,群组号:0908)类别的商标有1件,注册占比率达0.3%
9.选择注册(袖珍灯用电池,群组号:0922)类别的商标有1件,注册占比率达0.3%
10.选择注册(由演讲者使用的、在显示器上生成可视点的激光笔,群组号:0910)类别的商标有1件,注册占比率达0.3%
姓名:刘轩 学号:19020100412 学院:电子工程学院
转自:;depth_1-utm_source=distribute.pc_relevant.none-task-blog-2%7Edefault%7EBlogCommendFromMachineLearnPai2%7Edefault-1.control
【嵌牛导读】滤波器是射频前端中最重要的一个部件,其价值占据射频前端价值总量的50%
【嵌牛鼻子】射频前端 滤波器
【嵌牛提问】射频滤波器向高频化、模组化方向发展的优势和劣势?
【嵌牛正文】
摘要 :射频前端是移动通信设备中的核心部件,其细分元器件包括:滤波器(Filter)、功率放大器(PA)、射频开关(Switch)、低噪声放大器(LNA)、天线调谐器等,而滤波器是其中最重要的一个部件,其价值占据射频前端价值总量的50%。
目前,市场上的射频滤波器产品主要包括:SAW(声表面滤波器)、BAW(体声波滤波器)、陶瓷滤波器(LTCC滤波器)、IPD(Integrated Passive
Devices)等。衡量滤波器性能的指标有:Q值和插入损耗,其中SAW、BAW滤波器凭借高Q值、低插入损耗的优良性能已成为射频滤波器的主流选择。
SAW 滤波器在 2.5GHz 以下频段性能更好 SAW滤波器是采用石英晶体、压电陶瓷等压电材料,利用其压电效应和声表面波传播的物理特性而制成的一种滤波专用器件,广泛应用于电视机及录像机中频电路中以取代LC中频滤波器,使图像、声音的质量大大提高。SAW滤波器的主要特点是:设计灵活性大、模拟/数字兼容、群延迟时间偏差和频率选择性优良、输入输出阻抗误差小、传输损耗小、抗电磁干扰性能好、可靠性高、制作的器件体积小、重量轻且能实现多种复杂的功能。
SAW滤波器的特征和优点,符合现代通信对高频化、数字化、高性能、高可靠等方面的要求。其不足之处是:热稳定性较差,高频特性有待改善。但通过使用温度补偿材料生产的TC-SAW滤波器具有更好的热稳定性,更适合移动端使用,可是工艺更复杂、制造成本相对较高;日本村田公司改良的I.H.P-SAW滤波器克服了SAW低频的弱点,产品频率在3.5GHz,并兼具BAW的温度特性和高散热性优点,可部分替代BAW滤波器。
BAW 滤波器更适合高频通信要求 BAW滤波器内的声波主要是垂直传播,产品主要有BAW-SMR技术、FBAR技术两种,压电材料与SAW的石英材料不同,常用AlN(氮化铝)、PZT(锆钛酸铅)、ZnO(氧化锌)等材料。BAW与SAW相比性能更好、成本也更高,当频段越来越多,甚至开始使用载波聚合的时候,就必须得用BAW技术才能解决频段间的相互干扰问题。
BAW滤波器的尺寸随频率升高而缩小,适合要求更高的3G和4G通信,对于5G通信依然游刃有余。此外,即便在高宽带设计中,BAW对温度变化并不敏感,同时还具有极低的损耗和非常陡峭的滤波器裙边。
射频滤波器向微型化、高频化、模组化方向发展 滤波器产品主要向着低功耗、低成本、高性能三个目标发展,目前市场上主要呈现出两种技术发展趋势。一种是提高现有产品技术性能,例如改良的TC-SAW及FBAR滤波器产品,解决了产品本身的技术缺陷,提高了热稳定性和多频干扰难题,并通过专利壁垒进一步拉大与竞争对手的差距。另一种发展趋势是研发体积更小、成本更低的整体射频前端芯片。这种滤波器采用晶圆与晶圆的键合,通过成熟的TSV和电镀工艺、硅工艺结合在一起,滤波器的成本和体积都得到了大幅的减少,同时将滤波器与PA、射频开关等器件进行整体封装,向模块化、集成化方向发展,这一趋势未来将推动了整个射频行业的整合。
我国在滤波器技术的发展情况 目前,射频滤波器市场主要被村田、TDK、博通、Qorvo等美日几大巨头垄断,国内自给率较低。我国射频滤波器整体发展处于技术研发、初步量产阶段,产品主要应用在国内手机厂商中低端手机中,不论是产能还是技术水平都与国外厂商差距较大。国内从事滤波器的企业主要有德清华莹、中电26所、北京长峰、中讯四方、中科非鸿等,SAW产品方面主要有无锡好达、锐迪科、天通股份等公司,而适合高频的BAW滤波器国内还没有可以量产的公司。
结语 随着人们对移动通信的要求越来越高,全面屏及手机轻薄化、高频通信、频率资源拥挤化等都对滤波器的性能提出更高的要求,适应高频通信、热稳定性好、体积小、集成度高的滤波器将是未来的主要发展方向。